Optimal Output Sensitive Fault Tolerant Cuts

Authors Niranka Banerjee, Venkatesh Raman, Saket Saurabh



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2020.10.pdf
  • Filesize: 0.66 MB
  • 19 pages

Document Identifiers

Author Details

Niranka Banerjee
  • The Institute of Mathematical Sciences, HBNI, Chennai, India
Venkatesh Raman
  • The Institute of Mathematical Sciences, HBNI, Chennai, India
Saket Saurabh
  • The Institute of Mathematical Sciences, HBNI, Chennai, India
  • University of Bergen, Norway

Cite AsGet BibTex

Niranka Banerjee, Venkatesh Raman, and Saket Saurabh. Optimal Output Sensitive Fault Tolerant Cuts. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 10:1-10:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.10

Abstract

In this paper we consider two classic cut-problems, Global Min-Cut and Min k-Cut, via the lens of fault tolerant network design. In particular, given a graph G on n vertices, and a positive integer f, our objective is to compute an upper bound on the size of the sparsest subgraph H of G that preserves edge connectivity of G (denoted by λ(G)) in the case of Global Min-Cut, and λ(G,k) (denotes the minimum number of edges whose removal would partition the graph into at least k connected components) in the case of Min k-Cut, upon failure of any f edges of G. The subgraph H corresponding to Global Min-Cut and Min k-Cut is called f-FTCS and f-FT-k-CS, respectively. We obtain the following results about the sizes of f-FTCS and f-FT-k-CS. - There exists an f-FTCS with (n-1)(f+λ(G)) edges. We complement this upper bound with a matching lower bound, by constructing an infinite family of graphs where any f-FTCS must have at least ((n-λ(G)-1)(λ(G)+f-1))/2+(n-λ(G)-1)+/λ(G)(λ(G)+1))/2 edges. - There exists an f-FT-k-CS with min{(2f+λ(G,k)-(k-1))(n-1), (f+λ(G,k))(n-k)+𝓁} edges. We complement this upper bound with a lower bound, by constructing an infinite family of graphs where any f-FT-k-CS must have at least ((n-λ(G,k)-1)(λ(G,k)+f-k+1))/2)+n-λ(G,k)+k-3+((λ(G,k)-k+3)(λ(G,k)-k+2))/2 edges. Our upper bounds exploit the structural properties of k-connectivity certificates. On the other hand, for our lower bounds we construct an infinite family of graphs, such that for any graph in the family any f-FTCS (or f-FT-k-CS) must contain all its edges. We also add that our upper bounds are constructive. That is, there exist polynomial time algorithms that construct H with the aforementioned number of edges.

Subject Classification

ACM Subject Classification
  • Theory of computation → Data structures design and analysis
  • Theory of computation → Sparsification and spanners
Keywords
  • Fault tolerant
  • minimum cuts
  • upper bound
  • lower bound

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster alignment of sequences. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages 39-51. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-43948-7_4.
  2. Arturs Backurs and Christos Tzamos. Improving viterbi is hard: Better runtimes imply faster clique algorithms. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages 311-321. PMLR, 2017. URL: http://proceedings.mlr.press/v70/backurs17a.html.
  3. Surender Baswana, Shreejit Ray Chaudhury, Keerti Choudhary, and Shahbaz Khan. Dynamic DFS in undirected graphs: breaking the O(m) barrier. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 730-739, 2016. Google Scholar
  4. Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault tolerant reachability for directed graphs. In Distributed Computing - 29th International Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, pages 528-543, 2015. Google Scholar
  5. Davide Bilò, Fabrizio Grandoni, Luciano Gualà, Stefano Leucci, and Guido Proietti. Improved purely additive fault-tolerant spanners. In Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages 167-178, 2015. Google Scholar
  6. Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-edge-fault-tolerant approximate shortest-path trees. In 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, pages 18:1-18:14, 2016. Google Scholar
  7. Gilad Braunschvig, Shiri Chechik, David Peleg, and Adam Sealfon. Fault tolerant additive and (μ, α)-spanners. Theor. Comput. Sci., 580:94-100, 2015. Google Scholar
  8. Diptarka Chakraborty and Keerti Choudhary. New extremal bounds for reachability and strong-connectivity preservers under failures. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 25:1-25:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.25.
  9. Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault tolerant spanners for general graphs. SIAM J. Comput., 39(7):3403-3423, 2010. Google Scholar
  10. Chandra Chekuri, Kent Quanrud, and Chao Xu. LP relaxation and tree packing for minimum k-cuts. In 2nd Symposium on Simplicity in Algorithms, SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA, USA, pages 7:1-7:18, 2019. URL: https://doi.org/10.4230/OASIcs.SOSA.2019.7.
  11. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  12. Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and simpler. In Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing, PODC 2011, San Jose, CA, USA, June 6-8, 2011, pages 169-178, 2011. Google Scholar
  13. Rodney G. Downey, Vladimir Estivill-Castro, Michael R. Fellows, Elena Prieto-Rodriguez, and Frances A. Rosamond. Cutting up is hard to do: the parameterized complexity of k-cut and related problems. Electron. Notes Theor. Comput. Sci., 78:209-222, 2003. URL: https://doi.org/10.1016/S1571-0661(04)81014-4.
  14. Shimon Even. An algorithm for determining whether the connectivity of a graph is at least k. SIAM J. Comput., 4(3):393-396, 1975. URL: https://doi.org/10.1137/0204034.
  15. Harold N. Gabow. A matroid approach to finding edge connectivity and packing arborescences. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 112-122, 1991. URL: https://doi.org/10.1145/103418.103436.
  16. Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in O(m log²n) time. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 57:1-57:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.57.
  17. Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge connectivity via random 2-out contractions. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1260-1279. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.77.
  18. Olivier Goldschmidt and Dorit S. Hochbaum. A polynomial algorithm for the k-cut problem for fixed k. Math. Oper. Res., 19(1):24-37, 1994. URL: https://doi.org/10.1287/moor.19.1.24.
  19. Anupam Gupta, Euiwoong Lee, and Jason Li. The karger-stein algorithm is optimal for k-cut. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 473-484, 2020. URL: https://doi.org/10.1145/3357713.3384285.
  20. Manoj Gupta and Shahbaz Khan. Multiple source dual fault tolerant BFS trees. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 127:1-127:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.127.
  21. Nili Guttmann-Beck and Refael Hassin. Approximation algorithms for minimum K-cut. Algorithmica, 27(2):198-207, 2000. URL: https://doi.org/10.1007/s004530010013.
  22. Monika Henzinger, Satish Rao, and Di Wang. Local flow partitioning for faster edge connectivity. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1919-1938, 2017. URL: https://doi.org/10.1137/1.9781611974782.125.
  23. Monika Henzinger, Satish Rao, and Di Wang. Local flow partitioning for faster edge connectivity. SIAM J. Comput., 49(1):1-36, 2020. URL: https://doi.org/10.1137/18M1180335.
  24. David R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut algorithm. In Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 25-27 January 1993, Austin, Texas, USA, pages 21-30, 1993. URL: http://dl.acm.org/citation.cfm?id=313559.313605.
  25. David R. Karger. Using randomized sparsification to approximate minimum cuts. In Daniel Dominic Sleator, editor, Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. 23-25 January 1994, Arlington, Virginia, USA, pages 424-432. ACM/SIAM, 1994. URL: http://dl.acm.org/citation.cfm?id=314464.314582.
  26. David R. Karger. Using randomized sparsification to approximate minimum cuts. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. 23-25 January 1994, Arlington, Virginia, USA, pages 424-432, 1994. Google Scholar
  27. David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46-76, 2000. URL: https://doi.org/10.1145/331605.331608.
  28. David R. Karger and Clifford Stein. An oasciitilde(n^2) algorithm for minimum cuts. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages 757-765, 1993. URL: https://doi.org/10.1145/167088.167281.
  29. David R. Karger and Clifford Stein. A new approach to the minimum cut problem. J. ACM, 43(4):601-640, 1996. URL: https://doi.org/10.1145/234533.234534.
  30. Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic global minimum cut of a simple graph in near-linear time. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 665-674, 2015. URL: https://doi.org/10.1145/2746539.2746588.
  31. Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. A parameterized approximation scheme for min k-cut. CoRR, to appear in FOCS 2020, abs/2005.00134, 2020. URL: http://arxiv.org/abs/2005.00134.
  32. David W. Matula. A linear time 2+epsilon approximation algorithm for edge connectivity. In Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 25-27 January 1993, Austin, Texas, USA, pages 500-504, 1993. URL: http://dl.acm.org/citation.cfm?id=313559.313872.
  33. Karl Menger. Zur allgemeinen kurventheorie. Fund. Math. 10:, pages 96-115, 1927. Google Scholar
  34. Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-query, and streaming algorithms. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 496-509. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384334.
  35. Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583-596, 1992. URL: https://doi.org/10.1007/BF01758778.
  36. Merav Parter. Vertex fault tolerant additive spanners. In Distributed Computing - 28th International Symposium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings, pages 167-181, 2014. Google Scholar
  37. Merav Parter. Dual failure resilient BFS structure. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015, pages 481-490, 2015. Google Scholar
  38. Merav Parter and David Peleg. Sparse fault-tolerant BFS trees. In Algorithms - ESA 2013 - 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings, pages 779-790, 2013. Google Scholar
  39. Merav Parter and David Peleg. Fault tolerant approximate BFS structures. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1073-1092, 2014. Google Scholar
  40. Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM, 44(4):585-591, 1997. URL: https://doi.org/10.1145/263867.263872.
  41. Mikkel Thorup. Minimum k-way cuts via deterministic greedy tree packing. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 159-166. ACM, 2008. URL: https://doi.org/10.1145/1374376.1374402.
  42. Vijay Vazirani. Approximation algorithms. Berlin: Springer, ISBN 978-3-540-65367-7, 2003. Google Scholar