Morphing Planar Graph Drawings via Orthogonal Box Drawings

Authors Therese Biedl , Anna Lubiw , Jack Spalding-Jamieson



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.40.pdf
  • Filesize: 1.02 MB
  • 16 pages

Document Identifiers

Author Details

Therese Biedl
  • University of Waterloo, Canada
Anna Lubiw
  • University of Waterloo, Canada
Jack Spalding-Jamieson
  • University of Waterloo, Canada

Cite AsGet BibTex

Therese Biedl, Anna Lubiw, and Jack Spalding-Jamieson. Morphing Planar Graph Drawings via Orthogonal Box Drawings. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 40:1-40:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.40

Abstract

We give an algorithm to morph planar graph drawings that achieves small grid size at the expense of allowing a constant number of bends on each edge. The input is an n-vertex planar graph and two planar straight-line drawings of the graph on an O(n) × O(n) grid. The planarity-preserving morph is composed of O(n) linear morphs between successive pairs of drawings, each on an O(n) × O(n) grid with a constant number of bends per edge. The algorithm to compute the morph runs in O(n²) time on a word RAM model with standard arithmetic operations - in particular no square roots or cube roots are required. The first step of the algorithm is to morph each input drawing to a planar orthogonal box drawing where vertices are represented by boxes and each edge is drawn as a horizontal or vertical segment. The second step is to morph between planar orthogonal box drawings. This is done by extending known techniques for morphing planar orthogonal drawings with point vertices.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • morphing
  • graph morphing
  • linear morph
  • planar graph drawing
  • orthogonal box drawing
  • orthogonal drawing
  • algorithm

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Soroush Alamdari, Patrizio Angelini, Fidel Barrera-Cruz, Timothy M Chan, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Penny Haxell, Anna Lubiw, Maurizio Patrignani, Vincenzo Roselli, Sahil Singla, and Bryan T Wilkinson. How to morph planar graph drawings. SIAM Journal on Computing, 46(2):824-852, 2017. URL: https://doi.org/10.1137/16M1069171.
  2. Fidel Barrera-Cruz, Penny Haxell, and Anna Lubiw. Morphing Schnyder drawings of planar triangulations. Discrete & Computational Geometry, 61:161-184, 2019. URL: https://doi.org/10.1007/s00454-018-0018-9.
  3. Therese Biedl. Height-preserving transformations of planar graph drawings. In Christian Duncan and Antonios Symvonis, editors, Graph Drawing: 22nd International Symposium, GD 2014, Würzburg, Germany, September 24-26, 2014, pages 380-391, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-662-45803-7_32.
  4. Therese Biedl, Anna Lubiw, Mark Petrick, and Michael Spriggs. Morphing orthogonal planar graph drawings. ACM Transactions on Algorithms (TALG), 9(4):1-24, 2013. URL: https://doi.org/10.1145/2500118.
  5. Steven Chaplick, Philipp Kindermann, Jonathan Klawitter, Ignaz Rutter, and Alexander Wolff. Morphing rectangular duals. In Graph Drawing and Network Visualization: 30th International Symposium, GD 2022, Tokyo, Japan, September 13-16, 2022, pages 389-403. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-22203-0_28.
  6. Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational Geometry, 6(3):485-524, 1991. URL: https://doi.org/10.1007/BF02574703.
  7. Hubert De Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a grid. Combinatorica, 10:41-51, 1990. URL: https://doi.org/10.1007/BF02122694.
  8. Giuseppe Di Battista and Fabrizio Frati. From Tutte to Floater and Gotsman: on the resolution of planar straight-line drawings and morphs. In Graph Drawing and Network Visualization: 29th International Symposium, GD 2021, Tübingen, Germany, September 14-17, 2021, pages 109-122. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-92931-2_8.
  9. Jeff Erickson and Patrick Lin. Planar and toroidal morphs made easier. Journal of Graph Algorithms and Applications, 27(2):95-118, 2023. URL: https://doi.org/10.7155/jgaa.00616.
  10. Boris Klemz. Convex Drawings of Hierarchical Graphs in Linear Time, with Applications to Planar Graph Morphing. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium on Algorithms (ESA 2021), volume 204 of Leibniz International Proceedings in Informatics (LIPIcs), pages 57:1-57:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ESA.2021.57.
  11. Anna Lubiw and Mark Petrick. Morphing planar graph drawings with bent edges. Journal of Graph Algorithms and Applications, 15(2):205-227, 2011. URL: https://jgaa.info/index.php/jgaa/article/view/paper223/2737, URL: https://doi.org/10.7155/JGAA.00223.
  12. Walter Schnyder. Embedding planar graphs on the grid. In SODA '90: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 138-148, 1990. URL: https://dl.acm.org/doi/pdf/10.5555/320176.320191.
  13. Arthur van Goethem, Bettina Speckmann, and Kevin Verbeek. Optimal morphs of planar orthogonal drawings. Journal of Computational Geometry, 13(1):263-297, 2022. URL: https://doi.org/10.20382/jocg.v13i1a11.
  14. Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for matrix multiplication: from alpha to omega. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3792-3835, 2024. URL: https://doi.org/10.1137/1.9781611977912.134.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail