Challenges in Creating an Annotated Set of Geospatial Natural Language Descriptions (Short Paper)

Authors Niloofar Aflaki, Shaun Russell, Kristin Stock

Thumbnail PDF


  • Filesize: 367 kB
  • 6 pages

Document Identifiers

Author Details

Niloofar Aflaki
  • Massey University, Auckland, New Zealand
Shaun Russell
  • Massey University, Auckland, New Zealand
Kristin Stock
  • Massey University, Auckland, New Zealand

Cite AsGet BibTex

Niloofar Aflaki, Shaun Russell, and Kristin Stock. Challenges in Creating an Annotated Set of Geospatial Natural Language Descriptions (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 20:1-20:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


In order to extract and map location information from natural language descriptions, a first step is to identify different language elements within the descriptions. In this paper, we describe a method and discuss the challenges faced in creating an annotated set of geospatial natural language descriptions using manual tagging, with the purpose of supporting validation and machine learning approaches to annotation and text interpretation.

Subject Classification

ACM Subject Classification
  • Applied computing → Annotation
  • Annotation challenges
  • spatial relations
  • spatial language


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Kenny R Coventry and Simon C Garrod. Saying, seeing and acting: The psychological semantics of spatial prepositions. Psychology Press, 2004. Google Scholar
  2. Torsten Hahmann and Michael Gruninger. A naive theory of dimension for qualitative spatial relations. In AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning, 2011. Google Scholar
  3. R Ross J Bateman J Hois, T Tenbrink, R Ross, and J Bateman. Gum-space. Technical report, Technical report, Universität Bremen SFB/TR8 Spatial Cognition, 2009. Google Scholar
  4. John D Kelleher and Fintan J Costello. Applying computational models of spatial prepositions to visually situated dialog. Computational Linguistics, 35(2):271-306, 2009. Google Scholar
  5. Parisa Kordjamshidi, Martijn Van Otterlo, and Marie-Francine Moens. Spatial role labeling: Towards extraction of spatial relations from natural language. ACM Transactions on Speech and Language Processing (TSLP), 8(3):4, 2011. Google Scholar
  6. Marcus Kracht. The fine structure of spatial expressions. Syntax and semantics of spatial P, pages 35-62, 2008. Google Scholar
  7. Inderjeet Mani, Christy Doran, Dave Harris, Janet Hitzeman, Rob Quimby, Justin Richer, Ben Wellner, Scott Mardis, and Seamus Clancy. Spatialml: annotation scheme, resources, and evaluation. Language Resources and Evaluation, 44(3):263-280, 2010. Google Scholar
  8. Kristin Stock, Didier Leibovici, Luciene Delazari, and Roberto Santos. Discovering order in chaos: using a heuristic ontology to derive spatio-temporal sequences for cadastral data. Spatial Cognition &Computation, 15(2):115-141, 2015. Google Scholar
  9. Kristin Stock, Robert C Pasley, Zoe Gardner, Paul Brindley, Jeremy Morley, and Claudia Cialone. Creating a corpus of geospatial natural language. In International Conference on Spatial Information Theory, pages 279-298. Springer, 2013. Google Scholar
  10. Kristin Stock and Javid Yousaf. Context-aware automated interpretation of elaborate natural language descriptions of location through learning from empirical data. International Journal of Geographical Information Science, pages 1-30, 2018. Google Scholar
  11. Leonard Talmy. Toward a cognitive semantics, volume 2. MIT press, 2000. Google Scholar
  12. Joost Zwarts. Prepositional aspect and the algebra of paths. Linguistics and Philosophy, 28(6):739-779, 2005. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail