Exploring Shifting Densities through a Movement-based Cartographic Interface (Short Paper)

Authors Aline Menin, Sonia Chardonnel, Paule-Annick Davoine, Luciana Nedel



PDF
Thumbnail PDF

File

LIPIcs.GISCIENCE.2018.48.pdf
  • Filesize: 298 kB
  • 6 pages

Document Identifiers

Author Details

Aline Menin
  • Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LIG, 38000 Grenoble, France
Sonia Chardonnel
  • Univ. Grenoble Alpes, CNRS, Science Po Grenoble (School of Political Studies Univ. Grenoble Alpes), PACTE, 38000 Grenoble, France
Paule-Annick Davoine
  • Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LIG, 38000 Grenoble, France and Univ. Grenoble Alpes, CNRS, Science Po Grenoble (School of Political Studies Univ. Grenoble Alpes), PACTE, 38000 Grenoble, France
Luciana Nedel
  • Federal University of Rio Grande do Sul, Institute of Informatics, Porto Alegre, Brazil

Cite AsGet BibTex

Aline Menin, Sonia Chardonnel, Paule-Annick Davoine, and Luciana Nedel. Exploring Shifting Densities through a Movement-based Cartographic Interface (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 48:1-48:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.GISCIENCE.2018.48

Abstract

Animated maps are widely used for representing shifting densities. Though there is evidence that animations can provide better memory recall than static charts, it could be a consequence of using better techniques for animation than for static representations. However, the lack of control makes them frustrating for users, while animated choropleth maps can cause change blindness. In this paper, we propose an interactive animation technique which employs the lenticular printing metaphor and benefits from the user's proprioceptive sense to explore density changes over time. We hypothesized that using a tangible interface based on the body movement would improve memory recall and, consequently, animated map reading.

Subject Classification

ACM Subject Classification
  • Human-centered computing → User interface design
  • Human-centered computing → Visualization
  • Human-centered computing → Geographic visualization
  • Human-centered computing → Gestural input
  • Human-centered computing → Mobile computing
Keywords
  • proprioceptive interaction
  • lenticular technique
  • shifting densities
  • tangible interfaces
  • mobility analysis

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Isabelle I. André-Poyaud, Sonia Chardonnel, Laure L. Charleux, and Kamila Tabaka. La mobilité au cœur des emplois du temps des citadins. In Florence Paulhiac Yves Chalas, editor, La mobilité qui fait la ville, Débats, pages 67-95. CERTU, 2008. Google Scholar
  2. Mattias Arvola and Anna Holm. Device-orientation is more engaging than drag (at least in mobile computing). In Proceedings of the 8th Nordic Conference on Human-Computer Interaction: Fun, Fast, Foundational, pages 939-942. ACM, 2014. Google Scholar
  3. Benjamin Bach, Ronell Sicat, Johanna Beyer, Maxime Cordeil, and Hanspeter Pfister. The hologram in my hand: How effective is interactive exploration of 3d visualizations in immersive tangible augmented reality? IEEE transactions on visualization and computer graphics, 24(1):457-467, 2018. Google Scholar
  4. Julius Bañgate, Julie Dugdale, Elise Beck, and Carole Adam. Solace a multi-agent model of human behaviour driven by social attachment during seismic crisis. In 4th International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), pages 1-9. IEEE, 2017. Google Scholar
  5. Arnaud Banos and Thomas Thévenin. La carte animée pour révéler les rythmes urbains. Revue Internationale de Géomatique, 15(1):pp-11, 2005. Google Scholar
  6. Lonni Besançon, Paul Issartel, Mehdi Ammi, and Tobias Isenberg. Hybrid tactile/tangible interaction for 3d data exploration. IEEE transactions on visualization and computer graphics, 23(1):881-890, 2017. Google Scholar
  7. MF Buchroithner, Klaus Habermann, and Thomas Gruendemann. True 3d visualization of mountainous terrain by means of lenticular foil technology. In 4th ICA Mountain Cartography Workshop, pages 125-135, 2010. Google Scholar
  8. Wolfgang Büschel, Patrick Reipschläger, Ricardo Langner, and Raimund Dachselt. Investigating the use of spatial interaction for 3d data visualization on mobile devices. In Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces, pages 62-71. ACM, 2017. Google Scholar
  9. CEREMA. Enquête Ménages Déplacements (EMD), Grenoble, Grande région grenobloise. Archives de Données Issues de la Statistique Publique, 2010. Google Scholar
  10. Paule-Annick Davoine, Elise Beck, Isabelle André-Poyaud, Sonia Chardonnel, Céline Lutoff, and Anton Telechev. Géovisualisation pour la réduction de la vulnérabilité socio-spatiale en milieu urbain. Comité Français de Cartographie, 211:69-84, 2012. Google Scholar
  11. Frank Dickmann. The potential of the lenticular foil technique for thematic cartography. The Cartographic Journal, 47(3):250-256, 2010. Google Scholar
  12. Daniel Dorling. Stretching space and splicing time: from cartographic animation to interactive visualization. Cartography and Geographic Information Systems, 19(4):215-227, 1992. Google Scholar
  13. Carolyn Fish, Kirk P Goldsberry, and Sarah Battersby. Change blindness in animated choropleth maps: an empirical study. Cartography and Geographic Information Science, 38(4):350-362, 2011. Google Scholar
  14. Mark Harrower. Visualizing change: Using cartographic animation to explore remotely-sensed data. Cartographic Perspectives, 39:30-42, 2001. Google Scholar
  15. Christophe Hurez. Localisation spatiale et temporelle des personnes et des voitures á partir des enquêtes ménages déplacements. https://mappemonde-archive.mgm.fr/num27/fig10/fig10302.html, 2010. Accessed: 2018-04-23.
  16. Scott R Klemmer, Björn Hartmann, and Leila Takayama. How bodies matter: five themes for interaction design. In Proceedings of the 6th conference on Designing Interactive systems, pages 140-149. ACM, 2006. Google Scholar
  17. Guillaume Le Roux, Julie Vallée, and Hadrien Commenges. Social segregation around the clock in the paris region (france). Journal of Transport Geography, 59:134-145, 2017. Google Scholar
  18. Anderson Maciel, Luciana P Nedel, Vitor AM Jorge, Juan MT Ibiapina, and Luis FMS Silva. Reality cues-based interaction using whole-body awareness. In Proceedings of the 2010 ACM Symposium on Applied Computing, pages 1224-1228. ACM, 2010. Google Scholar
  19. Matthieu Mille. Des densités habitantes aux densités mouvantes l'exemple de la métropole lilloise. Cybergeo: European Journal of Geography, 2000. Google Scholar
  20. Mark R Mine, Frederick P Brooks Jr, and Carlo H Sequin. Moving objects in space: exploiting proprioception in virtual-environment interaction. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pages 19-26. ACM Press/Addison-Wesley Publishing Co., 1997. Google Scholar
  21. Barbara Tversky, Julie Bauer Morrison, and Mireille Betrancourt. Animation: can it facilitate? International journal of human-computer studies, 57(4):247-262, 2002. Google Scholar
  22. Julie Vallée. The daycourse of place. Social science &medicine, 194:177-181, 2017. Google Scholar
  23. David Wagman. Urban maps gives a vintage printing technique a high-tech revival. https://www.directionsmag.com/article/3272, 2009. Accessed: 2018-04-20.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail