The Jordan curve theorem and Brouwer's fixed-point theorem are fundamental problems in topology. We study their computational relationship, showing that a stylized computational version of Jordan’s theorem is PPAD-complete, and therefore in a sense computationally equivalent to Brouwer’s theorem. As a corollary, our computational result implies that these two theorems directly imply each other mathematically, complementing Maehara's proof that Brouwer implies Jordan [Maehara, 1984]. We then turn to the combinatorial game of Hex which is related to Jordan's theorem, and where the existence of a winner can be used to show Brouwer's theorem [Gale,1979]. We establish that determining who won an (implicitly encoded) play of Hex is PSPACE-complete by adapting a reduction (due to Goldberg [Goldberg,2015]) from Quantified Boolean Formula (QBF). As this problem is analogous to evaluating the output of a canonical path-following algorithm for finding a Brouwer fixed point - and which is known to be PSPACE-complete [Goldberg/Papadimitriou/Savani, 2013] - we thereby establish a connection between Brouwer, Jordan and Hex higher in the complexity hierarchy.
@InProceedings{adler_et_al:LIPIcs.ICALP.2016.24, author = {Adler, Aviv and Daskalakis, Constantinos and Demaine, Erik D.}, title = {{The Complexity of Hex and the Jordan Curve Theorem}}, booktitle = {43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)}, pages = {24:1--24:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-013-2}, ISSN = {1868-8969}, year = {2016}, volume = {55}, editor = {Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.24}, URN = {urn:nbn:de:0030-drops-63032}, doi = {10.4230/LIPIcs.ICALP.2016.24}, annote = {Keywords: Jordan, Brouwer, Hex, PPAD, PSPACE} }
Feedback for Dagstuhl Publishing