A Polynomial-Time Randomized Reduction from Tournament Isomorphism to Tournament Asymmetry

Author Pascal Schweitzer



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2017.66.pdf
  • Filesize: 0.49 MB
  • 14 pages

Document Identifiers

Author Details

Pascal Schweitzer

Cite AsGet BibTex

Pascal Schweitzer. A Polynomial-Time Randomized Reduction from Tournament Isomorphism to Tournament Asymmetry. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 66:1-66:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.ICALP.2017.66

Abstract

The paper develops a new technique to extract a characteristic subset from a random source that repeatedly samples from a set of elements. Here a characteristic subset is a set that when containing an element contains all elements that have the same probability. With this technique at hand the paper looks at the special case of the tournament isomorphism problem that stands in the way towards a polynomial-time algorithm for the graph isomorphism problem. Noting that there is a reduction from the automorphism (asymmetry) problem to the isomorphism problem, a reduction in the other direction is nevertheless not known and remains a thorny open problem. Applying the new technique, we develop a randomized polynomial-time Turing-reduction from the tournament isomorphism problem to the tournament automorphism problem. This is the first such reduction for any kind of combinatorial object not known to have a polynomial-time solvable isomorphism problem.
Keywords
  • graph isomorphism
  • asymmetry
  • tournaments
  • randomized reductions

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Manindra Agrawal and Vikraman Arvind. A note on decision versus search for graph automorphism. Inf. Comput., 131(2):179-189, 1996. URL: http://dx.doi.org/10.1006/inco.1996.0097.
  2. Eric Allender, Joshua A. Grochow, and Cristopher Moore. Graph isomorphism and circuit size. CoRR, abs/1511.08189, 2015. URL: http://arxiv.org/abs/1511.08189.
  3. Vikraman Arvind, Richard Beigel, and Antoni Lozano. The complexity of modular graph automorphism. SIAM J. Comput., 30(4):1299-1320, 2000. URL: http://dx.doi.org/10.1137/S0097539799358227.
  4. Vikraman Arvind, Bireswar Das, and Partha Mukhopadhyay. Isomorphism and canonization of tournaments and hypertournaments. J. Comput. Syst. Sci., 76(7):509-523, 2010. URL: http://dx.doi.org/10.1016/j.jcss.2009.09.001.
  5. László Babai. Monte carlo algorithms in graph isomorphism testing. Technical Report 79-10, Université de Montréal, 1979. Google Scholar
  6. László Babai. Automorphism groups, isomorphism, reconstruction. In Handbook of combinatorics, Vol. 2, pages 1447-1540. Elsevier, Amsterdam, 1995. Google Scholar
  7. László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, pages 684-697. ACM, 2016. URL: http://dx.doi.org/10.1145/2897518.2897542.
  8. László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceedings of the 15th Annual ACM Symposium on Theory of Computing, STOC 1983, Boston, Massachusetts, USA, 25-27 April, pages 171-183. ACM, 1983. URL: http://dx.doi.org/10.1145/800061.808746.
  9. Kellogg S. Booth and Charles J. Colbourn. Problems polynomially equivalent to graph isomorphism. Technical Report CS-77-04, Comp. Sci. Dep., Univ. Waterloo, 1979. Google Scholar
  10. Andrew M. Childs and Pawel Wocjan. On the quantum hardness of solving isomorphism problems as nonabelian hidden shift problems. Quantum Information & Computation, 7(5):504-521, 2007. Google Scholar
  11. Merrick L. Furst, John E. Hopcroft, and Eugene M. Luks. Polynomial-time algorithms for permutation groups. In 21st Annual Symposium on Foundations of Computer Science, Syracuse, New York, USA, 13-15 October, FOCS 1980, pages 36-41. IEEE Computer Society, 1980. URL: http://dx.doi.org/10.1109/SFCS.1980.34.
  12. Sumanta Ghosh and Piyush P. Kurur. Permutation groups and the graph isomorphism problem. In Perspectives in Computational Complexity: The Somenath Biswas Anniversary Volume, pages 183-202. Springer International Publishing, Cham, 2014. URL: http://dx.doi.org/10.1007/978-3-319-05446-9_11.
  13. Sean Hallgren, Alexander Russell, and Amnon Ta-Shma. The hidden subgroup problem and quantum computation using group representations. SIAM J. Comput., 32(4):916-934, 2003. URL: http://dx.doi.org/10.1137/S009753970139450X.
  14. Johannes Köbler, Uwe Schöning, and Jacobo Torán. The graph isomorphism problem: its structural complexity. Progress in Theoretical Computer Science. Birkhäuser Boston, Inc., Boston, MA, 1993. URL: http://dx.doi.org/10.1007/978-1-4612-0333-9.
  15. Martin Kutz and Pascal Schweitzer. Screwbox: a randomized certifying graph-non-isomorphism algorithm. In Proceedings of the Nine Workshop on Algorithm Engineering and Experiments, ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007. SIAM, 2007. URL: http://dx.doi.org/10.1137/1.9781611972870.14.
  16. Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci., 25(1):42-65, 1982. URL: http://dx.doi.org/10.1016/0022-0000(82)90009-5.
  17. Rudolf Mathon. A note on the graph isomorphism counting problem. Inf. Process. Lett., 8(3):131-132, 1979. URL: http://dx.doi.org/10.1016/0020-0190(79)90004-8.
  18. Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb. Comput., 60:94-112, 2014. URL: http://dx.doi.org/10.1016/j.jsc.2013.09.003.
  19. I. N. Ponomarenko. Polynomial time recognition and testing of isomorphism of cyclic tournaments. Journal of Mathematical Sciences, 70(4):1890-1911, 1994. URL: http://dx.doi.org/10.1007/BF02112430.
  20. I. N. Ponomarenko. Bases of schurian antisymmetric coherent configurations and an isomorphism test for schurian tournaments. Journal of Mathematical Sciences, 192(3):316-338, 2013. URL: http://dx.doi.org/10.1007/s10958-013-1398-2.
  21. Pascal Schweitzer. Problems of unknown complexity: Graph isomorphism and Ramsey theoretic numbers. PhD thesis, Universität des Saarlandes, Germany, 2009. Google Scholar
  22. Pascal Schweitzer. Towards an isomorphism dichotomy for hereditary graph classes. In 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of LIPIcs, pages 689-702. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://dx.doi.org/10.4230/LIPIcs.STACS.2015.689.
  23. Pascal Schweitzer. A polynomial-time randomized reduction from tournament isomorphism to tournament asymmetry. CoRR, abs/1704.08529, 2017. full version of the paper. URL: http://arxiv.org/abs/1704.08529.
  24. Jacobo Torán. On the hardness of graph isomorphism. SIAM J. Comput., 33(5):1093-1108, 2004. URL: http://dx.doi.org/10.1137/S009753970241096X.
  25. Fabian Wagner. Hardness results for tournament isomorphism and automorphism. In Mathematical Foundations of Computer Science 2007, 32nd International Symposium, MFCS 2007, Ceský Krumlov, Czech Republic, August 26-31, 2007, Proceedings, volume 4708 of Lecture Notes in Computer Science, pages 572-583. Springer, 2007. URL: http://dx.doi.org/10.1007/978-3-540-74456-6_51.
  26. Fabian Wagner. Hardness results for isomorphism and automorphism of bounded valence graphs. In SOFSEM 2008: Theory and Practice of Computer Science, 34th Conference on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia, January 19-25, 2008, Volume II, pages 131-140. Safarik University, Kosice, Slovakia, 2008. Google Scholar
  27. Fabian Wagner. On the Complexity of Isomorphism Testing for Restricted Classes of Graphs. PhD thesis, Universität Ulm, Germany, 2010. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail