Let H be an arbitrary family of hyper-planes in d-dimensions. We show that the point-location problem for H can be solved by a linear decision tree that only uses a special type of queries called generalized comparison queries. These queries correspond to hyperplanes that can be written as a linear combination of two hyperplanes from H; in particular, if all hyperplanes in H are k-sparse then generalized comparisons are 2k-sparse. The depth of the obtained linear decision tree is polynomial in d and logarithmic in |H|, which is comparable to previous results in the literature that use general linear queries. This extends the study of comparison trees from a previous work by the authors [Kane {et al.}, FOCS 2017]. The main benefit is that using generalized comparison queries allows to overcome limitations that apply for the more restricted type of comparison queries. Our analysis combines a seminal result of Forster regarding sets in isotropic position [Forster, JCSS 2002], the margin-based inference dimension analysis for comparison queries from [Kane {et al.}, FOCS 2017], and compactness arguments.
@InProceedings{kane_et_al:LIPIcs.ICALP.2018.82, author = {Kane, Daniel M. and Lovett, Shachar and Moran, Shay}, title = {{Generalized Comparison Trees for Point-Location Problems}}, booktitle = {45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)}, pages = {82:1--82:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-076-7}, ISSN = {1868-8969}, year = {2018}, volume = {107}, editor = {Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.82}, URN = {urn:nbn:de:0030-drops-90862}, doi = {10.4230/LIPIcs.ICALP.2018.82}, annote = {Keywords: linear decision trees, comparison queries, point location problems} }
Feedback for Dagstuhl Publishing