Short cycle decomposition is an edge partitioning of an unweighted graph into edge-disjoint short cycles, plus a small number of extra edges not in any cycle. This notion was introduced by Chu et al. [FOCS'18] as a fundamental tool for graph sparsification and sketching. Clearly, it is most desirable to have a fast algorithm for partitioning the edges into as short as possible cycles, while omitting few edges. The most naïve procedure for such decomposition runs in time O(m * n) and partitions the edges into O(log n)-length edge-disjoint cycles plus at most 2n edges. Chu et al. improved the running time considerably to m^{1+o(1)}, while increasing both the length of the cycles and the number of omitted edges by a factor of n^{o(1)}. Even more recently, Liu-Sachdeva-Yu [SODA'19] showed that for every constant delta in (0,1] there is an O(m * n^{delta})-time algorithm that provides, w.h.p., cycles of length O(log n)^{1/delta} and O(n) extra edges. In this paper, we significantly improve upon these bounds. We first show an m^{1+o(1)}-time deterministic algorithm for computing nearly optimal cycle decomposition, i.e., with cycle length O(log^2 n) and an extra subset of O(n log n) edges not in any cycle. This algorithm is based on a reduction to low-congestion cycle covers, introduced by the authors in [SODA'19]. We also provide a simple deterministic algorithm that computes edge-disjoint cycles of length 2^{1/epsilon} with n^{1+epsilon}* 2^{1/epsilon} extra edges, for every epsilon in (0,1]. Combining this with Liu-Sachdeva-Yu [SODA'19] gives a linear time randomized algorithm for computing cycles of length poly(log n) and O(n) extra edges, for every n-vertex graphs with n^{1+1/delta} edges for some constant delta. These decomposition algorithms lead to improvements in all the algorithmic applications of Chu et al. as well as to new distributed constructions.
@InProceedings{parter_et_al:LIPIcs.ICALP.2019.89, author = {Parter, Merav and Yogev, Eylon}, title = {{Optimal Short Cycle Decomposition in Almost Linear Time}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {89:1--89:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.89}, URN = {urn:nbn:de:0030-drops-106653}, doi = {10.4230/LIPIcs.ICALP.2019.89}, annote = {Keywords: Cycle decomposition, low-congestion cycle cover, graph sparsification} }
Feedback for Dagstuhl Publishing