The lexicographic depth-first search (Lex-DFS) is one of the first basic graph problems studied in the context of space-efficient algorithms. It is shown independently by Asano et al. [ISAAC 2014] and Elmasry et al. [STACS 2015] that Lex-DFS admits polynomial-time algorithms that run with O(n)-bit working memory, where n is the number of vertices in the graph. Lex-DFS is known to be P-complete under logspace reduction, and giving or ruling out polynomial-time sublinear-space algorithms for Lex-DFS on general graphs is quite challenging. In this paper, we study Lex-DFS on graphs of bounded treewidth. We first show that given a tree decomposition of width O(n^(1-ε)) with ε > 0, Lex-DFS can be solved in sublinear space. We then complement this result by presenting a space-efficient algorithm that can compute, for w ≤ √n, a tree decomposition of width O(w √nlog n) or correctly decide that the graph has a treewidth more than w. This algorithm itself would be of independent interest as the first space-efficient algorithm for computing a tree decomposition of moderate (small but non-constant) width. By combining these results, we can show in particular that graphs of treewidth O(n^(1/2 - ε)) for some ε > 0 admits a polynomial-time sublinear-space algorithm for Lex-DFS. We can also show that planar graphs admit a polynomial-time algorithm with O(n^(1/2+ε))-bit working memory for Lex-DFS.
@InProceedings{izumi_et_al:LIPIcs.ICALP.2020.67, author = {Izumi, Taisuke and Otachi, Yota}, title = {{Sublinear-Space Lexicographic Depth-First Search for Bounded Treewidth Graphs and Planar Graphs}}, booktitle = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, pages = {67:1--67:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-138-2}, ISSN = {1868-8969}, year = {2020}, volume = {168}, editor = {Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.67}, URN = {urn:nbn:de:0030-drops-124745}, doi = {10.4230/LIPIcs.ICALP.2020.67}, annote = {Keywords: depth-first search, space complexity, treewidth} }
Feedback for Dagstuhl Publishing