Consider a distributed graph where each vertex holds one of two distinct opinions. In this paper, we are interested in synchronous voting processes where each vertex updates its opinion according to a predefined common local updating rule. For example, each vertex adopts the majority opinion among 1) itself and two randomly picked neighbors in best-of-two or 2) three randomly picked neighbors in best-of-three. Previous works intensively studied specific rules including best-of-two and best-of-three individually. In this paper, we generalize and extend previous works of best-of-two and best-of-three on expander graphs by proposing a new model, quasi-majority functional voting. This new model contains best-of-two and best-of-three as special cases. We show that, on expander graphs with sufficiently large initial bias, any quasi-majority functional voting reaches consensus within O(log n) steps with high probability. Moreover, we show that, for any initial opinion configuration, any quasi-majority functional voting on expander graphs with higher expansion (e.g., Erdős-Rényi graph G(n,p) with p = Ω(1/√n)) reaches consensus within O(log n) with high probability. Furthermore, we show that the consensus time is O(log n/log k) of best-of-(2k+1) for k = o(n/log n).
@InProceedings{shimizu_et_al:LIPIcs.ICALP.2020.97, author = {Shimizu, Nobutaka and Shiraga, Takeharu}, title = {{Quasi-Majority Functional Voting on Expander Graphs}}, booktitle = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, pages = {97:1--97:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-138-2}, ISSN = {1868-8969}, year = {2020}, volume = {168}, editor = {Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.97}, URN = {urn:nbn:de:0030-drops-125042}, doi = {10.4230/LIPIcs.ICALP.2020.97}, annote = {Keywords: Distributed voting, consensus problem, expander graph, Markov chain} }
Feedback for Dagstuhl Publishing