Quasi-Polynomial Time Algorithms for Free Quantum Games in Bounded Dimension

Authors Hyejung H. Jee, Carlo Sparaciari, Omar Fawzi, Mario Berta



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2021.82.pdf
  • Filesize: 0.73 MB
  • 20 pages

Document Identifiers

Author Details

Hyejung H. Jee
  • Department of Computing, Imperial College London, UK
Carlo Sparaciari
  • Department of Computing, Imperial College London, UK
  • Department of Physics and Astronomy, University College London, UK
Omar Fawzi
  • Univ Lyon, ENS Lyon, UCBL, CNRS, Inria, LIP, F-69342, Lyon Cedex 07, France
Mario Berta
  • Department of Computing, Imperial College London, UK
  • IQIM, California Institute of Technology, Pasadena, CA, USA
  • AWS Center for Quantum Computing, Pasadena, CA, USA

Cite AsGet BibTex

Hyejung H. Jee, Carlo Sparaciari, Omar Fawzi, and Mario Berta. Quasi-Polynomial Time Algorithms for Free Quantum Games in Bounded Dimension. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 82:1-82:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.ICALP.2021.82

Abstract

In a recent landmark result [Ji et al., arXiv:2001.04383 (2020)], it was shown that approximating the value of a two-player game is undecidable when the players are allowed to share quantum states of unbounded dimension. In this paper, we study the computational complexity of two-player games when the dimension of the quantum systems is bounded by T. More specifically, we give a semidefinite program of size exp(𝒪(T^{12}(log²(AT)+log(Q)log(AT))/ε²)) to compute additive ε-approximations on the value of two-player free games with T× T-dimensional quantum entanglement, where A and Q denote the number of answers and questions of the game, respectively. For fixed dimension T, this scales polynomially in Q and quasi-polynomially in A, thereby improving on previously known approximation algorithms for which worst-case run-time guarantees are at best exponential in Q and A. For the proof, we make a connection to the quantum separability problem and employ improved multipartite quantum de Finetti theorems with linear constraints that we derive via quantum entropy inequalities.

Subject Classification

ACM Subject Classification
  • Theory of computation
Keywords
  • non-local game
  • semidefinite programming
  • quantum correlation
  • approximation algorithm
  • Lasserre hierarchy
  • de Finetti theorem

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Scott Aaronson, Russell Impagliazzo, and Dana Moshkovitz. AM with multiple Merlins. In IEEE 29th Conference on Computational Complexity, pages 44-55, 2014. Google Scholar
  2. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the hardness of approximation problems. Journal of the ACM, 45(3):501-555, 1998. Google Scholar
  3. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of NP. Journal of the ACM, 45(1):70-122, 1998. Google Scholar
  4. John S Bell. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika, 1(3):195, 1964. Google Scholar
  5. Charles H Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70(13):1895, 1993. Google Scholar
  6. Mario Berta, Francesco Borderi, Omar Fawzi, and Volkher B Scholz. Semidefinite programming hierarchies for constrained bilinear optimization. Mathematical Programming, pages 1-49, 2021. Google Scholar
  7. Fernando GSL Brandão and Aram W Harrow. Estimating operator norms using covering nets. arXiv:1509.05065, 2015. URL: http://arxiv.org/abs/1509.05065.
  8. Fernando GSL Brandão and Aram W Harrow. Product-state approximations to quantum states. Communications in Mathematical Physics, 342(1):47-80, 2016. Google Scholar
  9. Fernando GSL Brandão and Aram W Harrow. Quantum de Finetti theorems under local measurements with applications. Communications in Mathematical Physics, 353(2):469-506, 2017. Google Scholar
  10. Richard Cleve, Peter Høyer, Benjamin Toner, and John Watrous. Consequences and limits of nonlocal strategies. In Proceedings 19th IEEE Annual Conference on Computational Complexity, pages 236-249, 2004. Google Scholar
  11. Andrew C Doherty, Pablo A Parrilo, and Federico M Spedalieri. Distinguishing separable and entangled states. Physical Review Letters, 88(18):187904, 2002. Google Scholar
  12. Andrew C Doherty, Pablo A Parrilo, and Federico M Spedalieri. Complete family of separability criteria. Physical Review A, 69(2):022308, 2004. Google Scholar
  13. Andrew C Doherty, Pablo A Parrilo, and Federico M Spedalieri. Detecting multipartite entanglement. Physical Review A, 71(3):032333, 2005. Google Scholar
  14. Mark Fannes, John T Lewis, and André Verbeure. Symmetric states of composite systems. Letters in Mathematical Physics, 15(3):255-260, 1988. Google Scholar
  15. Rodrigo Gallego, Nicolas Brunner, Christopher Hadley, and Antonio Acín. Device-independent tests of classical and quantum dimensions. Physical Review Letters, 105(23):230501, 2010. Google Scholar
  16. Sevag Gharibian. Strong NP-hardness of the Quantum Separability Problem. Quantum Information and Computation, 10(3&4):343-360, 2010. Google Scholar
  17. Leonid Gurvits. Classical deterministic complexity of Edmonds' problem and quantum entanglement. In Proceedings of the thirty-fifth annual ACM symposium on theory of computing, pages 10-19, 2003. Google Scholar
  18. Pawel Horodecki. Separability criterion and inseparable mixed states with positive partial transposition. Physics Letters A, 232:333, 1997. Google Scholar
  19. Hyejung H Jee, Carlo Sparaciari, Omar Fawzi, and Mario Berta. Characterising quantum correlations of fixed dimension. arXiv preprint, 2020. URL: http://arxiv.org/abs/2005.08883.
  20. Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. MIP*= RE. arXiv:2001.04383, 2020. URL: http://arxiv.org/abs/2001.04383.
  21. Julia Kempe, Oded Regev, and Ben Toner. Unique games with entangled provers are easy. SIAM Journal on Computing, 39(7):3207-3229, 2010. Google Scholar
  22. Ludovico Lami, Carlos Palazuelos, and Andreas Winter. Ultimate data hiding in quantum mechanics and beyond. Communications in Mathematical Physics, 361(2):661-708, 2018. Google Scholar
  23. Göran Lindblad. Entropy, information and quantum measurements. Communications in Mathematical Physics, 33(4):305-322, 1973. Google Scholar
  24. William Matthews, Stephanie Wehner, and Andreas Winter. Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Communications in Mathematical Physics, 291(3):813-843, 2009. Google Scholar
  25. Miguel Navascués, Gonzalo de la Torre, and Tamás Vértesi. Characterization of quantum correlations with local dimension constraints and its device-independent applications. Physical Review X, 4(1):011011, 2014. Google Scholar
  26. Miguel Navascués, Adrien Feix, Mateus Araújo, and Tamás Vértesi. Characterizing finite-dimensional quantum behavior. Physical Review A, 92(4):042117, 2015. Google Scholar
  27. Miguel Navascués, Stefano Pironio, and Antonio Acín. A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New Journal of Physics, 10(7):073013, 2008. Google Scholar
  28. Miguel Navascués and Tamás Vértesi. Bounding the set of finite dimensional quantum correlations. Physical Review Letters, 115(2):020501, 2015. Google Scholar
  29. Stefano Pironio, Miguel Navascués, and Antonio Acín. Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM Journal on Optimization, 20(5):2157-2180, 2010. Google Scholar
  30. GA Raggio and Reinhard F Werner. Quantum statistical mechanics of general mean field systems. Helvetica Acta Physica, 62:980, 1989. Google Scholar
  31. Denis Rosset. SymDPoly: symmetry-adapted moment relaxations for noncommutative polynomial optimization. arXiv:1808.09598, 2018. URL: http://arxiv.org/abs/1808.09598.
  32. Yaoyun Shi and Xiaodi Wu. Epsilon-net method for optimizations over separable states. Theoretical Computer Science, 598:51-63, 2015. Google Scholar
  33. Barbara M Terhal. Is entanglement monogamous? IBM Journal of Research and Development, 48(1):71-78, 2004. Google Scholar
  34. Xiao-Dong Yu, Timo Simnacher, H Chau Nguyen, and Otfried Gühne. Quantum-inspired hierarchy for rank-constrained optimization. arXiv preprint, 2020. URL: http://arxiv.org/abs/2012.00554.
  35. Xiao-Dong Yu, Timo Simnacher, Nikolai Wyderka, H. Chau Nguyen, and Otfried Gühne. A complete hierarchy for the pure state marginal problem in quantum mechanics. Nature Communications, 12(1):1012, 2021. Google Scholar