A Brief Tour in Twin-Width (Invited Talk)

Author Stéphan Thomassé



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2022.6.pdf
  • Filesize: 406 kB
  • 5 pages

Document Identifiers

Author Details

Stéphan Thomassé
  • Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Cite AsGet BibTex

Stéphan Thomassé. A Brief Tour in Twin-Width (Invited Talk). In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 6:1-6:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.ICALP.2022.6

Abstract

This is an introduction to the notion of twin-width, with emphasis on how it interacts with first-order model checking and enumerative combinatorics. Even though approximating twin-width remains a challenge in general graphs, it is now well understood for ordered graphs, where bounded twin-width coincides with many other complexity gaps. For instance classes of graphs with linear FO-model checking, small classes, or NIP classes are exactly bounded twin-width classes. Some other applications of twin-width are also presented.

Subject Classification

ACM Subject Classification
  • Theory of computation → Finite Model Theory
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Twin-width
  • matrices
  • ordered graphs
  • enumerative combinatorics
  • model theory
  • algorithms
  • computational complexity
  • Ramsey theory

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Jungho Ahn, Kevin Hendrey, Donggyu Kim, and Sang-il Oum. Bounds for the twin-width of graphs. CoRR, abs/2110.03957, 2021. URL: http://arxiv.org/abs/2110.03957.
  2. Jakub Balabán and Petr Hlinený. Twin-width is linear in the poset width. In Petr A. Golovach and Meirav Zehavi, editors, 16th International Symposium on Parameterized and Exact Computation, IPEC 2021, September 8-10, 2021, Lisbon, Portugal, volume 214 of LIPIcs, pages 6:1-6:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.IPEC.2021.6.
  3. Jakub Balabán, Petr Hlinený, and Jan Jedelský. Twin-width and transductions of proper k-mixed-thin graphs. CoRR, abs/2202.12536, 2022. URL: http://arxiv.org/abs/2202.12536.
  4. Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is NP-complete. CoRR, abs/2112.08953, 2021. URL: http://arxiv.org/abs/2112.08953.
  5. Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and Stéphan Thomassé. Twin-width VIII: delineation and win-wins. CoRR, abs/2204.00722, 2022. URL: https://doi.org/10.48550/arXiv.2204.00722.
  6. Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width II: small classes. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1977-1996. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.118.
  7. Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width III: max independent set, min dominating set, and coloring. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 35:1-35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.35.
  8. Édouard Bonnet, Colin Geniet, Romain Tessera, and Stéphan Thomassé. Twin-width VII: groups. CoRR, abs/2204.12330, 2022. URL: https://doi.org/10.48550/arXiv.2204.12330.
  9. Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Torunczyk. Twin-width IV: ordered graphs and matrices. CoRR, abs/2102.03117, 2021. URL: http://arxiv.org/abs/2102.03117.
  10. Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width VI: the lens of contraction sequences. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 1036-1056. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.45.
  11. Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant. Twin-width and polynomial kernels. In Petr A. Golovach and Meirav Zehavi, editors, 16th International Symposium on Parameterized and Exact Computation, IPEC 2021, September 8-10, 2021, Lisbon, Portugal, volume 214 of LIPIcs, pages 10:1-10:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.IPEC.2021.10.
  12. Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I: tractable FO model checking. J. ACM, 69(1):3:1-3:46, 2022. URL: https://doi.org/10.1145/3486655.
  13. Édouard Bonnet, O-joung Kwon, and David R. Wood. Reduced bandwidth: a qualitative strengthening of twin-width in minor-closed classes (and beyond). CoRR, abs/2202.11858, 2022. URL: http://arxiv.org/abs/2202.11858.
  14. Sylvain Guillemot and Dániel Marx. Finding small patterns in permutations in linear time. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 82-101. SIAM, 2014. URL: https://doi.org/10.1137/1.9781611973402.7.
  15. Hugo Jacob and Marcin Pilipczuk. Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs. CoRR, abs/2201.09749, 2022. URL: http://arxiv.org/abs/2201.09749.
  16. Stefan Kratsch, Florian Nelles, and Alexandre Simon. On triangle counting parameterized by twin-width. CoRR, abs/2202.06708, 2022. URL: http://arxiv.org/abs/2202.06708.
  17. Adam Marcus and Gábor Tardos. Excluded permutation matrices and the stanley-wilf conjecture. J. Comb. Theory, Ser. A, 107(1):153-160, 2004. URL: https://doi.org/10.1016/j.jcta.2004.04.002.
  18. William Pettersson and John Sylvester. Bounds on the twin-width of product graphs. CoRR, abs/2202.11556, 2022. URL: http://arxiv.org/abs/2202.11556.
  19. Michal Pilipczuk and Marek Sokolowski. Graphs of bounded twin-width are quasi-polynomially χ-bounded. CoRR, abs/2202.07608, 2022. URL: http://arxiv.org/abs/2202.07608.
  20. Michal Pilipczuk, Marek Sokolowski, and Anna Zych-Pawlewicz. Compact representation for matrices of bounded twin-width. In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs, pages 52:1-52:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.STACS.2022.52.
  21. Wojciech Przybyszewski. VC-density and abstract cell decomposition for edge relation in graphs of bounded twin-width. CoRR, abs/2202.04006, 2022. URL: http://arxiv.org/abs/2202.04006.
  22. André Schidler and Stefan Szeider. A SAT approach to twin-width. CoRR, abs/2110.06146, 2021. URL: http://arxiv.org/abs/2110.06146.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail