We design the first efficient sensitivity oracles and dynamic algorithms for a variety of parameterized problems. Our main approach is to modify the algebraic coding technique from static parameterized algorithm design, which had not previously been used in a dynamic context. We particularly build off of the "extensor coding" method of Brand, Dell and Husfeldt [STOC'18], employing properties of the exterior algebra over different fields. For the k-Path detection problem for directed graphs, it is known that no efficient dynamic algorithm exists (under popular assumptions from fine-grained complexity). We circumvent this by designing an efficient sensitivity oracle, which preprocesses a directed graph on n vertices in 2^k poly(k) n^{ω+o(1)} time, such that, given 𝓁 updates (mixing edge insertions and deletions, and vertex deletions) to that input graph, it can decide in time 𝓁² 2^kpoly(k) and with high probability, whether the updated graph contains a path of length k. We also give a deterministic sensitivity oracle requiring 4^k poly(k) n^{ω+o(1)} preprocessing time and 𝓁² 2^{ω k + o(k)} query time, and obtain a randomized sensitivity oracle for the task of approximately counting the number of k-paths. For k-Path detection in undirected graphs, we obtain a randomized sensitivity oracle with O(1.66^k n³) preprocessing time and O(𝓁³ 1.66^k) query time, and a better bound for undirected bipartite graphs. In addition, we present the first fully dynamic algorithms for a variety of problems: k-Partial Cover, m-Set k-Packing, t-Dominating Set, d-Dimensional k-Matching, and Exact k-Partial Cover. For example, for k-Partial Cover we show a randomized dynamic algorithm with 2^k poly(k)polylog(n) update time, and a deterministic dynamic algorithm with 4^k poly(k)polylog(n) update time. Finally, we show how our techniques can be adapted to deal with natural variants on these problems where additional constraints are imposed on the solutions.
@InProceedings{alman_et_al:LIPIcs.ICALP.2022.9, author = {Alman, Josh and Hirsch, Dean}, title = {{Parameterized Sensitivity Oracles and Dynamic Algorithms Using Exterior Algebras}}, booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)}, pages = {9:1--9:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-235-8}, ISSN = {1868-8969}, year = {2022}, volume = {229}, editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.9}, URN = {urn:nbn:de:0030-drops-163504}, doi = {10.4230/LIPIcs.ICALP.2022.9}, annote = {Keywords: sensitivity oracles, k-path, dynamic algorithms, parameterized algorithms, set packing, partial cover, exterior algebra, extensor, algebraic algorithms} }
Feedback for Dagstuhl Publishing