A 4/3 Approximation for 2-Vertex-Connectivity

Authors Miguel Bosch-Calvo, Fabrizio Grandoni, Afrouz Jabal Ameli



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2023.29.pdf
  • Filesize: 0.67 MB
  • 13 pages

Document Identifiers

Author Details

Miguel Bosch-Calvo
  • IDSIA, USI-SUPSI, Lugano, Switzerland
Fabrizio Grandoni
  • IDSIA, USI-SUPSI, Lugano, Switzerland
Afrouz Jabal Ameli
  • TU Eindhoven, The Netherlands

Cite AsGet BibTex

Miguel Bosch-Calvo, Fabrizio Grandoni, and Afrouz Jabal Ameli. A 4/3 Approximation for 2-Vertex-Connectivity. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 29:1-29:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.ICALP.2023.29

Abstract

The 2-Vertex-Connected Spanning Subgraph problem (2VCSS) is among the most basic NP-hard (Survivable) Network Design problems: we are given an (unweighted) undirected graph G. Our goal is to find a subgraph S of G with the minimum number of edges which is 2-vertex-connected, namely S remains connected after the deletion of an arbitrary node. 2VCSS is well-studied in terms of approximation algorithms, and the current best (polynomial-time) approximation factor is 10/7 by Heeger and Vygen [SIDMA'17] (improving on earlier results by Khuller and Vishkin [STOC'92] and Garg, Vempala and Singla [SODA'93]). Here we present an improved 4/3 approximation. Our main technical ingredient is an approximation preserving reduction to a conveniently structured subset of instances which are "almost" 3-vertex-connected. The latter reduction might be helpful in future work.

Subject Classification

ACM Subject Classification
  • Theory of computation → Routing and network design problems
Keywords
  • Algorithm
  • Network Design
  • Vertex-Connectivity
  • Approximation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. David Adjiashvili. Beating approximation factor two for weighted tree augmentation with bounded costs. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2384-2399. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.157.
  2. Étienne Bamas, Marina Drygala, and Ola Svensson. A simple LP-based approximation algorithm for the matching augmentation problem. In Karen Aardal and Laura Sanità, editors, Integer Programming and Combinatorial Optimization - 23rd International Conference, IPCO 2022, Eindhoven, The Netherlands, June 27-29, 2022, Proceedings, volume 13265 of Lecture Notes in Computer Science, pages 57-69. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-06901-7_5.
  3. Miguel Bosch-Calvo, Fabrizio Grandoni, and Afrouz Jabal Ameli. A 4/3 approximation for 2-vertex-connectivity, 2023. URL: https://arxiv.org/abs/2305.02240.
  4. Jaroslaw Byrka, Fabrizio Grandoni, and Afrouz Jabal Ameli. Breaching the 2-approximation barrier for connectivity augmentation: a reduction to steiner tree. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 815-825. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384301.
  5. Federica Cecchetto, Vera Traub, and Rico Zenklusen. Bridging the gap between tree and connectivity augmentation: unified and stronger approaches. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 370-383. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451086.
  6. Joe Cheriyan, Jack Dippel, Fabrizio Grandoni, Arindam Khan, and Vishnu V. Narayan. The matching augmentation problem: a 7/4-approximation algorithm. Math. Program., 182(1):315-354, 2020. URL: https://doi.org/10.1007/s10107-019-01394-z.
  7. Joseph Cheriyan, Robert Cummings, Jack Dippel, and J. Zhu. An improved approximation algorithm for the matching augmentation problem. CoRR, abs/2007.11559, 2020. URL: https://arxiv.org/abs/2007.11559.
  8. Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via lift-and-project, part I: stemless TAP. Algorithmica, 80(2):530-559, 2018. URL: https://doi.org/10.1007/s00453-016-0270-4.
  9. Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via lift-and-project, part II. Algorithmica, 80(2):608-651, 2018. URL: https://doi.org/10.1007/s00453-017-0275-7.
  10. Joseph Cheriyan, András Sebö, and Zoltán Szigeti. Improving on the 1.5-approximation of a smallest 2-edge connected spanning subgraph. SIAM J. Discret. Math., 14(2):170-180, 2001. URL: https://doi.org/10.1137/S0895480199362071.
  11. Joseph Cheriyan and Ramakrishna Thurimella. Approximating minimum-size k-connected spanning subgraphs via matching. SIAM J. Comput., 30(2):528-560, 2000. URL: https://doi.org/10.1137/S009753979833920X.
  12. Nachshon Cohen and Zeev Nutov. A (1+ln2)-approximation algorithm for minimum-cost 2-edge-connectivity augmentation of trees with constant radius. Theor. Comput. Sci., 489-490:67-74, 2013. URL: https://doi.org/10.1016/j.tcs.2013.04.004.
  13. Artur Czumaj and Andrzej Lingas. On approximability of the minimum-cost k-connected spanning subgraph problem. In Robert Endre Tarjan and Tandy J. Warnow, editors, Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 17-19 January 1999, Baltimore, Maryland, USA, pages 281-290. ACM/SIAM, 1999. URL: http://dl.acm.org/citation.cfm?id=314500.314573.
  14. E. A. Dinits, A. V. Karzanov, and M. V. Lomonosov. On the structure of a family of minimal weighted cuts in a graph. Studies in Discrete Optimization, pages 290-306, 1976. Google Scholar
  15. Guy Even, Jon Feldman, Guy Kortsarz, and Zeev Nutov. A 1.8 approximation algorithm for augmenting edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms, 5(2):21:1-21:17, 2009. URL: https://doi.org/10.1145/1497290.1497297.
  16. Samuel Fiorini, Martin Groß, Jochen Könemann, and Laura Sanità. Approximating weighted tree augmentation via chvátal-gomory cuts. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 817-831. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975031.53.
  17. Harold N. Gabow and Suzanne Gallagher. Iterated rounding algorithms for the smallest k-edge connected spanning subgraph. SIAM J. Comput., 41(1):61-103, 2012. URL: https://doi.org/10.1137/080732572.
  18. Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Krzysztof Sornat. On the cycle augmentation problem: Hardness and approximation algorithms. In Evripidis Bampis and Nicole Megow, editors, Approximation and Online Algorithms - 17th International Workshop, WAOA 2019, Munich, Germany, September 12-13, 2019, Revised Selected Papers, volume 11926 of Lecture Notes in Computer Science, pages 138-153. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-39479-0_10.
  19. Mohit Garg, Fabrizio Grandoni, and Afrouz Jabal Ameli. Improved approximation for two-edge-connectivity. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 2368-2410. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch92.
  20. Naveen Garg, Santosh S. Vempala, and Aman Singla. Improved approximation algorithms for biconnected subgraphs via better lower bounding techniques. In Vijaya Ramachandran, editor, Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 25-27 January 1993, Austin, Texas, USA, pages 103-111. ACM/SIAM, 1993. URL: http://dl.acm.org/citation.cfm?id=313559.313618.
  21. Fabrizio Grandoni, Afrouz Jabal Ameli, and Vera Traub. Breaching the 2-approximation barrier for the forest augmentation problem. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1598-1611. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520035.
  22. Fabrizio Grandoni, Christos Kalaitzis, and Rico Zenklusen. Improved approximation for tree augmentation: saving by rewiring. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 632-645, New York, NY, USA, 2018. Association for Computing Machinery. URL: https://doi.org/10.1145/3188745.3188898.
  23. Prabhakar Gubbala and Balaji Raghavachari. Approximation algorithms for the minimum cardinality two-connected spanning subgraph problem. In Michael Jünger and Volker Kaibel, editors, Integer Programming and Combinatorial Optimization, 11th International IPCO Conference, Berlin, Germany, June 8-10, 2005, Proceedings, volume 3509 of Lecture Notes in Computer Science, pages 422-436. Springer, 2005. URL: https://doi.org/10.1007/11496915_31.
  24. Klaus Heeger and Jens Vygen. Two-connected spanning subgraphs with at most 10/7 opt edges. SIAM J. Discret. Math., 31(3):1820-1835, 2017. URL: https://doi.org/10.1137/16M1091587.
  25. Christoph Hunkenschröder, Santosh S. Vempala, and Adrian Vetta. A 4/3-approximation algorithm for the minimum 2-edge connected subgraph problem. ACM Trans. Algorithms, 15(4):55:1-55:28, 2019. URL: https://doi.org/10.1145/3341599.
  26. Raja Jothi, Balaji Raghavachari, and Subramanian Varadarajan. A 5/4-approximation algorithm for minimum 2-edge-connectivity. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA, pages 725-734. ACM/SIAM, 2003. URL: http://dl.acm.org/citation.cfm?id=644108.644227.
  27. Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings. In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors, Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6, 1992, Victoria, British Columbia, Canada, pages 759-770. ACM, 1992. URL: https://doi.org/10.1145/129712.129786.
  28. Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings. J. ACM, 41(2):214-235, 1994. URL: https://doi.org/10.1145/174652.174654.
  29. Guy Kortsarz and Zeev Nutov. Lp-relaxations for tree augmentation. In Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, volume 60 of LIPIcs, pages 13:1-13:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.13.
  30. Guy Kortsarz and Zeev Nutov. A simplified 1.5-approximation algorithm for augmenting edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms, 12(2):23:1-23:20, 2016. URL: https://doi.org/10.1145/2786981.
  31. Hiroshi Nagamochi. An approximation for finding a smallest 2-edge-connected subgraph containing a specified spanning tree. Discret. Appl. Math., 126(1):83-113, 2003. URL: https://doi.org/10.1016/S0166-218X(02)00218-4.
  32. Zeev Nutov. On the tree augmentation problem. In 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, pages 61:1-61:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.ESA.2017.61.
  33. Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer Science & Business Media, 2003. Google Scholar
  34. András Sebö and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-tsp, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Comb., 34(5):597-629, 2014. URL: https://doi.org/10.1007/s00493-014-2960-3.
  35. Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree augmentation. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1-12. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00010.
  36. Vera Traub and Rico Zenklusen. A (1.5+ε)-approximation algorithm for weighted connectivity augmentation. CoRR, abs/2209.07860, 2022. URL: https://doi.org/10.48550/arXiv.2209.07860.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail