Context-bounded analysis of concurrent programs is a technique to compute a sequence of under-approximations of all behaviors of the program. For a fixed bound k, a context bounded analysis considers only those runs in which a single process is interrupted at most k times. As k grows, we capture more and more behaviors of the program. Practically, context-bounding has been very effective as a bug-finding tool: many bugs can be found even with small bounds. Theoretically, context-bounded analysis is decidable for a large number of programming models for which verification problems are undecidable. In this paper, we survey some recent work in context-bounded analysis of multithreaded programs. In particular, we show a general decidability result. We study context-bounded reachability in a language-theoretic setup. We fix a class of languages (satisfying some mild conditions) from which each thread is chosen. We show context-bounded safety and termination verification problems are decidable iff emptiness is decidable for the underlying class of languages and context-bounded boundedness is decidable iff finiteness is decidable for the underlying class.
@InProceedings{baumann_et_al:LIPIcs.ICALP.2023.3, author = {Baumann, Pascal and Ganardi, Moses and Majumdar, Rupak and Thinniyam, Ramanathan S. and Zetzsche, Georg}, title = {{Context-Bounded Analysis of Concurrent Programs}}, booktitle = {50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)}, pages = {3:1--3:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-278-5}, ISSN = {1868-8969}, year = {2023}, volume = {261}, editor = {Etessami, Kousha and Feige, Uriel and Puppis, Gabriele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.3}, URN = {urn:nbn:de:0030-drops-180559}, doi = {10.4230/LIPIcs.ICALP.2023.3}, annote = {Keywords: Context-bounded analysis, Multi-threaded programs, Decidability} }
Feedback for Dagstuhl Publishing