Document

# Zero-Rate Thresholds and New Capacity Bounds for List-Decoding and List-Recovery

## File

LIPIcs.ICALP.2023.99.pdf
• Filesize: 1.08 MB
• 18 pages

## Acknowledgements

YZ is grateful to Shashank Vatedka, Diyuan Wu and Fengxing Zhu for inspiring discussions.

## Cite As

Nicolas Resch, Chen Yuan, and Yihan Zhang. Zero-Rate Thresholds and New Capacity Bounds for List-Decoding and List-Recovery. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 99:1-99:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.ICALP.2023.99

## Abstract

In this work we consider the list-decodability and list-recoverability of arbitrary q-ary codes, for all integer values of q ≥ 2. A code is called (p,L)_q-list-decodable if every radius pn Hamming ball contains less than L codewords; (p,𝓁,L)_q-list-recoverability is a generalization where we place radius pn Hamming balls on every point of a combinatorial rectangle with side length 𝓁 and again stipulate that there be less than L codewords. Our main contribution is to precisely calculate the maximum value of p for which there exist infinite families of positive rate (p,𝓁,L)_q-list-recoverable codes, the quantity we call the zero-rate threshold. Denoting this value by p_*, we in fact show that codes correcting a p_*+ε fraction of errors must have size O_ε(1), i.e., independent of n. Such a result is typically referred to as a "Plotkin bound." To complement this, a standard random code with expurgation construction shows that there exist positive rate codes correcting a p_*-ε fraction of errors. We also follow a classical proof template (typically attributed to Elias and Bassalygo) to derive from the zero-rate threshold other tradeoffs between rate and decoding radius for list-decoding and list-recovery. Technically, proving the Plotkin bound boils down to demonstrating the Schur convexity of a certain function defined on the q-simplex as well as the convexity of a univariate function derived from it. We remark that an earlier argument claimed similar results for q-ary list-decoding; however, we point out that this earlier proof is flawed.

## Subject Classification

##### ACM Subject Classification
• Mathematics of computing → Coding theory
##### Keywords
• Coding theory
• List-decoding
• List-recovery
• Zero-rate thresholds

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Noga Alon, Boris Bukh, and Yury Polyanskiy. List-decodable zero-rate codes. IEEE Transactions on Information Theory, 65(3):1657-1667, 2018.
2. Erdal Arikan. Upper bound on the zero-error list-coding capacity. Information Theory, IEEE Transactions on, 40:1237-1240, August 1994. URL: https://doi.org/10.1109/18.335947.
3. László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time simulations unless EXPTIME has publishable proofs. Comput. Complex., 3:307-318, 1993. URL: https://doi.org/10.1007/BF01275486.
4. L. A. Bassalygo. New upper bounds for error-correcting codes. Probl. of Info. Transm., 1:32-35, 1965.
5. Vladimir M Blinovsky. Bounds for codes in the case of list decoding of finite volume. Problems of Information Transmission, 22:7-19, 1986.
6. Vladimir M Blinovsky. Code bounds for multiple packings over a nonbinary finite alphabet. Problems of Information Transmission, 41:23-32, 2005.
7. Vladimir M Blinovsky. On the convexity of one coding-theory function. Problems of Information Transmission, 44:34-39, 2008.
8. Volodia Blinovsky. Asymptotic combinatorial coding theory, volume 415 of The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Boston, MA, 1997. URL: https://doi.org/10.1007/978-1-4615-6193-4.
9. Marco Bondaschi and Marco Dalai. A revisitation of low-rate bounds on the reliability function of discrete memoryless channels for list decoding. IEEE Transactions on Information Theory, 68(5):2829-2838, 2022. URL: https://doi.org/10.1109/TIT.2022.3145318.
10. Simone Costa and Marco Dalai. New bounds for perfect k-hashing. CoRR, abs/2002.11025, 2020. URL: https://arxiv.org/abs/2002.11025.
11. M. Dalai, V. G. Carnegie, and J. Radhakrishnan. An improved bound on the zero-error list-decoding capacity of the 4/3 channel. In 2017 IEEE International Symposium on Information Theory (ISIT), pages 1658-1662, June 2017. URL: https://doi.org/10.1109/ISIT.2017.8006811.
12. Stefano Della Fiore, Simone Costa, and Marco Dalai. Improved bounds for (b, k)-hashing. IEEE Transactions on Information Theory, 68(8):4983-4997, 2022. URL: https://doi.org/10.1109/TIT.2022.3167608.
13. Philippe Delsarte. An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl., 10:vi+-97, 1973.
14. Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. Nearly optimal pseudorandomness from hardness. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 1057-1068. IEEE, 2020.
15. Dean Doron and Mary Wootters. High-probability list-recovery, and applications to heavy hitters. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.
16. Peter Elias. List decoding for noisy channels. Wescon Convention Record, Part 2, pages 94-104, 1957.
17. Peter Elias. Error-correcting codes for list decoding. IEEE Transactions on Information Theory, 37(1):5-12, 1991.
18. M. Fredman and J. Komlós. On the size of separating systems and families of perfect hash functions. SIAM Journal on Algebraic Discrete Methods, 5(1):61-68, 1984. URL: https://doi.org/10.1137/0605009.
19. Edgar N Gilbert. A comparison of signalling alphabets. The Bell System Technical Journal, 31(3):504-522, 1952.
20. Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), pages 25-32. ACM, 1989.
21. Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of efficiently decodable codes. In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 658-667, 2001. URL: https://doi.org/10.1109/SFCS.2001.959942.
22. Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes for unique decoding and new list-decodable codes over smaller alphabets. In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 812-821, 2002.
23. Venkatesan Guruswami and Piotr Indyk. Linear time encodable and list decodable codes. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 126-135, 2003.
24. Venkatesan Guruswami and Piotr Indyk. Efficiently decodable codes meeting gilbert-varshamov bound for low rates. In SODA, volume 4, pages 756-757. Citeseer, 2004.
25. Venkatesan Guruswami, Ray Li, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas, and Mary Wootters. Bounds for list-decoding and list-recovery of random linear codes. IEEE Transactions on Information Theory, 68(2):923-939, 2022. URL: https://doi.org/10.1109/TIT.2021.3127126.
26. Venkatesan Guruswami, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas, and Mary Wootters. Threshold rates for properties of random codes. IEEE Transactions on Information Theory, 68(2):905-922, 2022. URL: https://doi.org/10.1109/TIT.2021.3123497.
27. Venkatesan Guruswami and Andrii Riazanov. Beating Fredman-Komlós for Perfect k-Hashing. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132, pages 92:1-92:14, Dagstuhl, Germany, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.92.
28. Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding theory, January 31, 2022. Draft available at URL: https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/web-coding-book.pdf.
29. Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and randomness extractors from parvaresh-vardy codes. Journal of the ACM (JACM), 56(4):1-34, 2009.
30. Iftach Haitner, Yuval Ishai, Eran Omri, and Ronen Shaltiel. Parallel hashing via list recoverability. In Annual Cryptology Conference, pages 173-190. Springer, 2015.
31. Justin Holmgren, Alex Lombardi, and Ron D Rothblum. Fiat-shamir via list-recoverable codes (or: parallel repetition of gmw is not zero-knowledge). In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 750-760, 2021.
32. Piotr Indyk, Hung Q Ngo, and Atri Rudra. Efficiently decodable non-adaptive group testing. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 1126-1142. SIAM, 2010.
33. Jeffrey C Jackson. An efficient membership-query algorithm for learning DNF with respect to the uniform distribution. Journal of Computer and System Sciences, 55(3):414-440, 1997.
34. J. Körner. Coding of an information source having ambiguous alphabet and the entropy of graphs. In Transactions of the Sixth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (Tech Univ., Prague, 1971; dedicated to the memory of Antonín Špaček), pages 411-425. Academia, Prague, 1973.
35. J. Körner. Fredman-komlós bounds and information theory. SIAM Journal on Algebraic Discrete Methods, pages 560-570, 1986.
36. J. Körner and K. Marton. New bounds for perfect hashing via information theory. European Journal of Combinatorics, 9(6):523-530, 1988. URL: https://doi.org/10.1016/S0195-6698(88)80048-9.
37. Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier spectrum. SIAM Journal on Computing, 22(6):1331-1348, 1993.
38. Richard J Lipton. Efficient checking of computations. In Proceedings of the 7th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 207-215. Springer, 1990.
39. Robert J. McEliece, Eugene R. Rodemich, Howard Rumsey, Jr., and Lloyd R. Welch. New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Trans. Inform. Theory, IT-23(2):157-166, 1977. URL: https://doi.org/10.1109/tit.1977.1055688.
40. Jonathan Mosheiff, Nicolas Resch, Noga Ron-Zewi, Shashwat Silas, and Mary Wootters. LDPC codes achieve list decoding capacity. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science, pages 458-469. IEEE Computer Soc., Los Alamitos, CA, [2020] (C) 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00050.
41. Hung Q Ngo, Ely Porat, and Atri Rudra. Efficiently decodable error-correcting list disjunct matrices and applications. In International Colloquium on Automata, Languages, and Programming, pages 557-568. Springer, 2011.
42. Morris Plotkin. Binary codes with specified minimum distance. IRE Transactions on Information Theory, 6(4):445-450, 1960.
43. Yury Polyanskiy. Upper bound on list-decoding radius of binary codes. IEEE Transactions on Information Theory, 62(3):1119-1128, 2016.
44. Nicolas Resch. List-decodable codes:(randomized) constructions and applications. School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep., CMU-CS-20-113, 2020.
45. Nicolas Resch and Chen Yuan. Threshold rates of code ensembles: Linear is best. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 104:1-104:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.104.
46. Nicolas Resch, Chen Yuan, and Yihan Zhang. Zero-rate thresholds and new capacity bounds for list-decoding and list-recovery. CoRR, abs/2210.07754, 2022. URL: https://doi.org/10.48550/arXiv.2210.07754.
47. Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the XOR lemma. Journal of Computer and System Sciences, 62(2):236-266, 2001.
48. RR Varshamov. Estimate of the number of signals in error correcting codes. Docklady Akad. Nauk, SSSR, 117:739-741, 1957.
49. Lloyd R. Welch, Robert J. McEliece, and Howard Rumsey, Jr. A low-rate improvement on the Elias bound. IEEE Trans. Inform. Theory, IT-20:676-678, 1974. URL: https://doi.org/10.1109/tit.1974.1055279.
50. Jack Wozencraft. List decoding. Quarter Progress Report, 48:90-95, 1958.
51. Chaoping Xing and Chen Yuan. Beating the probabilistic lower bound on perfect hashing. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 33-41. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.3.
52. Yihan Zhang, Amitalok J. Budkuley, and Sidharth Jaggi. Generalized List Decoding. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020), volume 151 of Leibniz International Proceedings in Informatics (LIPIcs), pages 51:1-51:83, Dagstuhl, Germany, 2020. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.ITCS.2020.51.
X

Feedback for Dagstuhl Publishing