LIPIcs.ICALP.2024.106.pdf
- Filesize: 1.08 MB
- 17 pages
The paper revisits the Robust s-t Path problem, one of the most fundamental problems in robust optimization. In the problem, we are given a directed graph with n vertices and k distinct cost functions (scenarios) defined over edges, and aim to choose an s-t path such that the total cost of the path is always provable no matter which scenario is realized. Viewing each cost function as an agent, our goal is to find a fair s-t path, which minimizes the maximum cost among all agents. The problem is NP-hard to approximate within a factor of o(log k) unless NP ⊆ DTIME(n^{polylog n}), and the best-known approximation ratio is Õ(√n), which is based on the natural flow linear program. A longstanding open question is whether we can achieve a polylogarithmic approximation for the problem; it remains open even if a quasi-polynomial running time is allowed. Our main result is a O(log n log k) approximation for the Robust s-t Path problem in quasi-polynomial time, solving the open question in the quasi-polynomial time regime. The algorithm is built on a novel linear program formulation for a decision-tree-type structure, which enables us to overcome the Ω(√n) integrality gap for the natural flow LP. Furthermore, we show that for graphs with bounded treewidth, the quasi-polynomial running time can be improved to a polynomial. We hope our techniques can offer new insights into this problem and other related problems in robust optimization.
Feedback for Dagstuhl Publishing