LIPIcs.ICALP.2024.113.pdf
- Filesize: 1.07 MB
- 17 pages
We present a reconfiguration analogue of alphabet reduction à la Dinur (J. ACM, 2007) and its applications. Given a binary constraint graph G and its two satisfying assignments ψ^ini and ψ^tar, the Maxmin 2-CSP Reconfiguration problem requests to transform ψ^ini into ψ^tar by repeatedly changing the value of a single vertex so that the minimum fraction of satisfied edges is maximized. We demonstrate a polynomial-time reduction from Maxmin 2-CSP Reconfiguration with arbitrarily large alphabet size W ∈ ℕ to itself with universal alphabet size W₀ ∈ ℕ such that 1) the perfect completeness is preserved, and 2) if any reconfiguration for the former violates ε-fraction of edges, then Ω(ε)-fraction of edges must be unsatisfied during any reconfiguration for the latter. The crux of its construction is the reconfigurability of Hadamard codes, which enables to reconfigure between a pair of codewords, while avoiding getting too close to the other codewords. Combining this alphabet reduction with gap amplification due to Ohsaka (SODA 2024), we are able to amplify the 1 vs. 1-ε gap for arbitrarily small ε ∈ (0,1) up to the 1 vs. 1-ε₀ for some universal ε₀ ∈ (0,1) without blowing up the alphabet size. In particular, a 1 vs. 1-ε₀ gap version of Maxmin 2-CSP Reconfiguration with alphabet size W₀ is PSPACE-hard given a probabilistically checkable reconfiguration proof system having any soundness error 1-ε due to Hirahara and Ohsaka (STOC 2024) and Karthik C. S. and Manurangsi (2023). As an immediate corollary, we show that there exists a universal constant ε₀ ∈ (0,1) such that many popular reconfiguration problems are PSPACE-hard to approximate within a factor of 1-ε₀, including those of 3-SAT, Independent Set, Vertex Cover, Clique, Dominating Set, and Set Cover. This may not be achieved only by gap amplification of Ohsaka, which makes the alphabet size gigantic depending on ε^-1.
Feedback for Dagstuhl Publishing