Solving Promise Equations over Monoids and Groups

Authors Alberto Larrauri , Stanislav Živný



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2024.146.pdf
  • Filesize: 0.83 MB
  • 18 pages

Document Identifiers

Author Details

Alberto Larrauri
  • Department of Computer Science, University of Oxford, UK
Stanislav Živný
  • Department of Computer Science, University of Oxford, UK

Cite AsGet BibTex

Alberto Larrauri and Stanislav Živný. Solving Promise Equations over Monoids and Groups. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 146:1-146:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ICALP.2024.146

Abstract

We give a complete complexity classification for the problem of finding a solution to a given system of equations over a fixed finite monoid, given that a solution over a more restricted monoid exists. As a corollary, we obtain a complexity classification for the same problem over groups.

Subject Classification

ACM Subject Classification
  • Theory of computation → Problems, reductions and completeness
  • Theory of computation → Constraint and logic programming
Keywords
  • constraint satisfaction
  • promise constraint satisfaction
  • equations
  • minions

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Kristina Asimi and Libor Barto. Finitely tractable promise constraint satisfaction problems. In Proc. 46th International Symposium on Mathematical Foundations of Computer Science (MFCS'21), volume 202 of LIPIcs, pages 11:1-11:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.MFCS.2021.11.
  2. Albert Atserias and Víctor Dalmau. Promise constraint satisfaction and width. In Proc. 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA'22), pages 1129-1153, 2022. URL: https://doi.org/10.1137/1.9781611977073.48.
  3. Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2+ε)-Sat is NP-hard. SIAM J. Comput., 46(5):1554-1573, 2017. URL: https://doi.org/10.1137/15M1006507.
  4. Libor Barto, Diego Battistelli, and Kevin M. Berg. Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case. In Proc. 38th International Symposium on Theoretical Aspects of Computer Science (STACS'21), volume 187 of LIPIcs, pages 10:1-10:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.STACS.2021.10.
  5. Libor Barto, Jakub Bulín, Andrei A. Krokhin, and Jakub Opršal. Algebraic approach to promise constraint satisfaction. J. ACM, 68(4):28:1-28:66, 2021. URL: https://doi.org/10.1145/3457606.
  6. Libor Barto and Marcin Kozik. Combinatorial Gap Theorem and Reductions between Promise CSPs. In Proc. 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA'22), pages 1204-1220, 2022. URL: https://doi.org/10.1137/1.9781611977073.50.
  7. Amey Bhangale and Subhash Khot. Optimal Inapproximability of Satisfiable k-LIN over Non-Abelian Groups. In Proc. 53rd Annual ACM Symposium on Theory of Computing (STOC'21), pages 1615-1628. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451003.
  8. Amey Bhangale, Subhash Khot, and Dor Minzer. On Approximability of Satisfiable k-CSPs: II. In Proc. 55th Annual ACM Symposium on Theory of Computing (STOC'23), pages 632-642. ACM, 2023. URL: https://doi.org/10.1145/3564246.3585120.
  9. Amey Bhangale, Subhash Khot, and Dor Minzer. On Approximability of Satisfiable k-CSPs: III. In Proc. 55th Annual ACM Symposium on Theory of Computing (STOC'23), pages 643-655. ACM, 2023. URL: https://doi.org/10.1145/3564246.3585121.
  10. Manuel Bodirsky. Complexity of infinite-domain constraint satisfaction, volume 52. Cambridge University Press, 2021. Google Scholar
  11. Manuel Bodirsky and Martin Grohe. Non-dichotomies in Constraint Satisfaction Complexity. In Proc. 35th International Colloquium on Automata, Languages and Programming (ICALP'08), volume 5126 of Lecture Notes in Computer Science, pages 184-196. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-70583-3_16.
  12. Manuel Bodirsky and Thomas Quinn-Gregson. Solving equation systems in ω-categorical algebras. J. Math. Log., 21(3), 2021. URL: https://doi.org/10.1142/S0219061321500203.
  13. Joshua Brakensiek and Venkatesan Guruswami. Promise Constraint Satisfaction: Algebraic Structure and a Symmetric Boolean Dichotomy. SIAM J. Comput., 50(6):1663-1700, 2021. URL: https://doi.org/10.1137/19M128212X.
  14. Joshua Brakensiek, Venkatesan Guruswami, and Sai Sandeep. Conditional Dichotomy of Boolean Ordered Promise CSPs. TheoretiCS, 2, 2023. URL: https://doi.org/10.46298/theoretics.23.2.
  15. Joshua Brakensiek, Venkatesan Guruswami, and Sai Sandeep. SDPs and robust satisfiability of promise CSP. In Proc. 55th Annual ACM Symposium on Theory of Computing (STOC'23), pages 609-622. ACM, 2023. URL: https://doi.org/10.1145/3564246.3585180.
  16. Joshua Brakensiek, Venkatesan Guruswami, Marcin Wrochna, and Stanislav Živný. The power of the combined basic LP and affine relaxation for promise CSPs. SIAM J. Comput., 49:1232-1248, 2020. URL: https://doi.org/10.1137/20M1312745.
  17. Alex Brandts and Stanislav Živný. Beyond PCSP(1-in-3,NAE). Information and Computation, 2022. URL: https://doi.org/10.1016/j.ic.2022.104954.
  18. Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of constraints using finite algebras. SIAM J. Comput., 34(3):720-742, 2005. URL: https://doi.org/10.1137/S0097539700376676.
  19. Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM Trans. Comput. Log., 12(4):24:1-24:66, 2011. URL: https://doi.org/10.1145/1970398.1970400.
  20. Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proc. 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS'17), pages 319-330, 2017. URL: https://doi.org/10.1109/FOCS.2017.37.
  21. Lorenzo Ciardo and Stanislav Živný. Approximate graph colouring and the hollow shadow. In Proc. 55th Annual ACM Symposium on Theory of Computing (STOC'23), pages 623-631. ACM, 2023. URL: https://doi.org/10.1145/3564246.3585112.
  22. Lorenzo Ciardo and Stanislav Živný. CLAP: A new algorithm for promise CSPs. SIAM J. Comput., 52(1):1-37, 2023. URL: https://doi.org/10.1137/22M1476435.
  23. Lorenzo Ciardo and Stanislav Živný. Hierarchies of minion tests for PCSPs through tensors. In Proc. 2023 ACM-SIAM Symposium on Discrete Algorithms (SODA'23), pages 568-580, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch25.
  24. Victor Dalmau and Jakub Opršal. Local consistency as a reduction between constraint satisfaction problems. CoRR, 2023. URL: https://arxiv.org/abs/2301.05084.
  25. Lars Engebretsen, Jonas Holmerin, and Alexander Russell. Inapproximability results for equations over finite groups. Theor. Comput. Sci., 312(1):17-45, 2004. URL: https://doi.org/10.1016/S0304-3975(03)00401-8.
  26. Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM J. Comput., 28(1):57-104, 1998. URL: https://doi.org/10.1137/S0097539794266766.
  27. Miron Ficak, Marcin Kozik, Miroslav Olšák, and Szymon Stankiewicz. Dichotomy for Symmetric Boolean PCSPs. In Proc. 46th International Colloquium on Automata, Languages, and Programming (ICALP'19), volume 132, pages 57:1-57:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.57.
  28. M. R. Garey and David S. Johnson. The complexity of near-optimal graph coloring. J. ACM, 23(1):43-49, 1976. URL: https://doi.org/10.1145/321921.321926.
  29. Mikael Goldmann and Alexander Russell. The complexity of solving equations over finite groups. Inf. Comput., 178(1):253-262, 2002. URL: https://doi.org/10.1006/INCO.2002.3173.
  30. Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM, 54(1):1-24, 2007. URL: https://doi.org/10.1145/1206035.1206036.
  31. Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798-859, 2001. URL: https://doi.org/10.1145/502090.502098.
  32. Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Comb. Theory, Ser. B, 48(1):92-110, 1990. URL: https://doi.org/10.1016/0095-8956(90)90132-J.
  33. John M Howie. Fundamentals of semigroup theory. Oxford University Press, 1995. Google Scholar
  34. Peter G. Jeavons, David A. Cohen, and Marc Gyssens. Closure properties of constraints. J. ACM, 44(4):527-548, 1997. URL: https://doi.org/10.1145/263867.263489.
  35. Ondřej Klíma, Pascal Tesson, and Denis Thérien. Dichotomies in the complexity of solving systems of equations over finite semigroups. Theory Comput. Syst., 40(3):263-297, 2007. URL: https://doi.org/10.1007/S00224-005-1279-2.
  36. Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint satisfaction. J. Comput. Syst. Sci., 61(2):302-332, 2000. URL: https://doi.org/10.1006/jcss.2000.1713.
  37. Michael Kompatscher. The equation solvability problem over supernilpotent algebras with Mal’cev term. International Journal of Algebra and Computation, 28(06):1005-1015, 2018. URL: https://doi.org/10.1142/S0218196718500443.
  38. Andrei Krokhin, Jakub Opršal, Marcin Wrochna, and Stanislav Živný. Topology and adjunction in promise constraint satisfaction. SIAM J. Comput., 52(1):37-79, 2023. URL: https://doi.org/10.1137/20M1378223.
  39. Benoît Larose and László Zádori. Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras. Int. J. Algebra Comput., 16(3):563-582, 2006. URL: https://doi.org/10.1142/S0218196706003116.
  40. Alberto Larrauri and Stanislav Živný. Solving promise equations over monoids and groups. CoRR, 2024. URL: https://arxiv.org/abs/2402.08434.
  41. Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. J. ACM, 60(6), 2013. Article No. 42. URL: https://doi.org/10.1145/2535926.
  42. Peter Mayr. On the complexity dichotomy for the satisfiability of systems of term equations over finite algebras. In Proc. 48th International Symposium on Mathematical Foundations of Computer Science (MFCS'23), volume 272 of LIPIcs, pages 66:1-66:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.MFCS.2023.66.
  43. Tamio-Vesa Nakajima and Stanislav Živný. Linearly ordered colourings of hypergraphs. ACM Trans. Comput. Theory, 13(3-4), 2022. URL: https://doi.org/10.1145/3570909.
  44. Tamio-Vesa Nakajima and Stanislav Zivný. Boolean symmetric vs. functional PCSP dichotomy. In Proc. 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS'23), 2023. URL: https://doi.org/10.1109/LICS56636.2023.10175746.
  45. Thomas Schaefer. The complexity of satisfiability problems. In Proc. 10th Annual ACM Symposium on the Theory of Computing (STOC'78), pages 216-226, 1978. URL: https://doi.org/10.1145/800133.804350.
  46. Steve Seif and Csaba Szabó. Algebra complexity problems involving graph homomorphism, semigroups and the constraint satisfaction problem. J. Complex., 19(2):153-160, 2003. URL: https://doi.org/10.1016/S0885-064X(02)00027-4.
  47. Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1-30:78, 2020. URL: https://doi.org/10.1145/3402029.