,
Fedor V. Fomin
,
Petr A. Golovach
,
Tuukka Korhonen
Creative Commons Attribution 4.0 International license
We study Two-Sets Cut-Uncut on planar graphs. Therein, one is given an undirected planar graph G and two disjoint sets S and T of vertices as input. The question is, what is the minimum number of edges to remove from G, such that all vertices in S are separated from all vertices in T, while maintaining that every vertex in S, and respectively in T, stays in the same connected component. We show that this problem can be solved in 2^{|S|+|T|} n^𝒪(1) time with a one-sided-error randomized algorithm. Our algorithm implies a polynomial-time algorithm for the network diversion problem on planar graphs, which resolves an open question from the literature. More generally, we show that Two-Sets Cut-Uncut is fixed-parameter tractable when parameterized by the number r of faces in a planar embedding covering the terminals S ∪ T, by providing a 2^𝒪(r) n^𝒪(1)-time algorithm.
@InProceedings{bentert_et_al:LIPIcs.ICALP.2024.22,
author = {Bentert, Matthias and Drange, P\r{a}l Gr{\o}n\r{a}s and Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka},
title = {{Two-Sets Cut-Uncut on Planar Graphs}},
booktitle = {51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
pages = {22:1--22:18},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-322-5},
ISSN = {1868-8969},
year = {2024},
volume = {297},
editor = {Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.22},
URN = {urn:nbn:de:0030-drops-201654},
doi = {10.4230/LIPIcs.ICALP.2024.22},
annote = {Keywords: planar graphs, cut-uncut, group-constrained paths}
}