Exponential Lower Bounds via Exponential Sums

Authors Somnath Bhattacharjee, Markus Bläser , Pranjal Dutta , Saswata Mukherjee



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2024.24.pdf
  • Filesize: 0.87 MB
  • 20 pages

Document Identifiers

Author Details

Somnath Bhattacharjee
  • Chennai Mathematical Institute, India
Markus Bläser
  • Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
Pranjal Dutta
  • School of Computing, National University of Singapore, Singapore
Saswata Mukherjee
  • Chennai Mathematical Institute, India

Cite AsGet BibTex

Somnath Bhattacharjee, Markus Bläser, Pranjal Dutta, and Saswata Mukherjee. Exponential Lower Bounds via Exponential Sums. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 24:1-24:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ICALP.2024.24

Abstract

Valiant’s famous VP vs. VNP conjecture states that the symbolic permanent polynomial does not have polynomial-size algebraic circuits. However, the best upper bound on the size of the circuits computing the permanent is exponential. Informally, VNP is an exponential sum of VP-circuits. In this paper we study whether, in general, exponential sums (of algebraic circuits) require exponential-size algebraic circuits. We show that the famous Shub-Smale τ-conjecture indeed implies such an exponential lower bound for an exponential sum. Our main tools come from parameterized complexity. Along the way, we also prove an exponential fpt (fixed-parameter tractable) lower bound for the parameterized algebraic complexity class VW⁰_{nb}[𝖯], assuming the same conjecture. VW⁰_{nb}[𝖯] can be thought of as the weighted sums of (unbounded-degree) circuits, where only ± 1 constants are cost-free. To the best of our knowledge, this is the first time the Shub-Smale τ-conjecture has been applied to prove explicit exponential lower bounds. Furthermore, we prove that when this class is fpt, then a variant of the counting hierarchy, namely the linear counting hierarchy collapses. Moreover, if a certain type of parameterized exponential sums is fpt, then integers, as well as polynomials with coefficients being definable in the linear counting hierarchy have subpolynomial τ-complexity. Finally, we characterize a related class VW[𝖥], in terms of permanents, where we consider an exponential sum of algebraic formulas instead of circuits. We show that when we sum over cycle covers that have one long cycle and all other cycles have constant length, then the resulting family of polynomials is complete for VW[𝖥] on certain types of graphs.

Subject Classification

ACM Subject Classification
  • Theory of computation → Algebraic complexity theory
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Algebraic complexity
  • parameterized complexity
  • exponential sums
  • counting hierarchy
  • tau conjecture

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Yaroslav Alekseev, Dima Grigoriev, Edward A. Hirsch, and Iddo Tzameret. Semi-algebraic proofs, IPS lower bounds and the τ-conjecture: Can a natural number be negative? CoRR, abs/1911.06738, 2019. URL: https://arxiv.org/abs/1911.06738.
  2. Eric Allender, Michal Koucký, Detlef Ronneburger, Sambuddha Roy, and V. Vinay. Time-space tradeoffs in the counting hierarchy. In Proceedings of the 16th Annual IEEE Conference on Computational Complexity, Chicago, Illinois, USA, June 18-21, 2001, pages 295-302. IEEE Computer Society, 2001. URL: https://doi.org/10.1109/CCC.2001.933896.
  3. Markus Bläser and Christian Engels. Parameterized Valiant’s Classes. In Bart M. P. Jansen and Jan Arne Telle, editors, 14th International Symposium on Parameterized and Exact Computation (IPEC 2019), volume 148 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1-3:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.IPEC.2019.3.
  4. Lenore Blum, Felipe Cucker, Mike Shub, and Steve Smale. Algebraic settings for the problem “P ≠ NP?”. In The Collected Papers of Stephen Smale: Volume 3, pages 1540-1559. World Scientific, 2000. URL: https://doi.org/10.1142/9789812792839_0025.
  5. Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin (New Series) of the American Mathematical Society, 21(1):1-46, 1989. URL: https://www.ams.org/journals/bull/1989-21-01/S0273-0979-1989-15750-9/S0273-0979-1989-15750-9.pdf.
  6. Peter Bürgisser. On defining integers and proving arithmetic circuit lower bounds. computational complexity, 18:81-103, April 2009. URL: https://doi.org/10.1007/s00037-009-0260-x.
  7. Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen. Exponential time complexity of the permanent and the Tutte polynomial. ACM Trans. Algorithms, 10(4):21:1-21:32, 2014. URL: https://doi.org/10.1145/2635812.
  8. Pranjal Dutta. Real τ-conjecture for sum-of-squares: A unified approach to lower bound and derandomization. In International Computer Science Symposium in Russia, pages 78-101. Springer, 2021. Google Scholar
  9. Jörg Flum and Martin Grohe. Parametrized complexity and subexponential time (column: Computational complexity). Bull. EATCS, 84:71-100, 2004. Google Scholar
  10. Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2006. URL: https://doi.org/10.1007/3-540-29953-X.
  11. David G. Glynn. The permanent of a square matrix. European Journal of Combinatorics, 31(7):1887-1891, 2010. URL: https://doi.org/10.1016/j.ejc.2010.01.010.
  12. William Hesse, Eric Allender, and D.A. Barrington. Uniform constant-depth threshold circuits for division and iterated multiplication. Journal of Computer and System Sciences, 65(4):695-716, 2002. URL: https://doi.org/10.1016/S0022-0000(02)00025-9.
  13. Stasys Jukna and Georg Schnitger. On the optimality of bellman-ford-moore shortest path algorithm. Theoretical Computer Science, 628:101-109, 2016. Google Scholar
  14. Pascal Koiran. Valiant’s model and the cost of computing integers. computational complexity, 13:131-146, 2005. Google Scholar
  15. Pascal Koiran. Shallow circuits with high-powered inputs. In Innovations in Computer Science - ICS, 2011. URL: https://hal-ens-lyon.archives-ouvertes.fr/ensl-00477023v4/document.
  16. Pascal Koiran and Sylvain Perifel. Interpolation in Valiant’s theory. Computational Complexity, 20:1-20, 2011. Google Scholar
  17. Guillaume Malod. The complexity of polynomials and their coefficient functions. In Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07), pages 193-204. IEEE, 2007. Google Scholar
  18. Guillaume Malod and Natacha Portier. Characterizing Valiant’s algebraic complexity classes. J. Complexity, 24(1):16-38, 2008. URL: https://doi.org/10.1016/j.jco.2006.09.006.
  19. Herbert John Ryser. Combinatorial Mathematics, volume 14 of Carus Mathematical Monographs. Mathematical Association of America, 1963. Google Scholar
  20. Michael Shub and Steve Smale. On the intractability of Hilbert’s Nullstellensatz and an algebraic version of “ NP≠ P?”. Duke Mathematical Journal, 81(1):47-54, 1995. URL: http://www.cityu.edu.hk/ma/doc/people/smales/pap97.pdf.
  21. Sébastien Tavenas. Bornes inferieures et superieures dans les circuits arithmetiques. PhD thesis, Ecole Normale Supérieure de Lyon, 2014. URL: https://tel.archives-ouvertes.fr/tel-01066752/document.
  22. Jacobo Torán. Complexity classes defined by counting quantifiers. J. ACM, 38:753-774, July 1991. URL: https://doi.org/10.1145/116825.116858.
  23. Leslie G. Valiant. Completeness classes in algebra. In Michael J. Fischer, Richard A. DeMillo, Nancy A. Lynch, Walter A. Burkhard, and Alfred V. Aho, editors, Proceedings of the 11h Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages 249-261. ACM, 1979. URL: https://doi.org/10.1145/800135.804419.
  24. Klaus W. Wagner. The complexity of combinatorial problems with succinct input representation. Acta Informatica, 23(3):325-356, 1986. URL: https://doi.org/10.1007/BF00289117.