Given a simple weighted directed graph G = (V, E, ω) on n vertices as well as two designated terminals s, t ∈ V, our goal is to compute the shortest path from s to t avoiding any pair of presumably failed edges f₁, f₂ ∈ E, which is a natural generalization of the classical replacement path problem which considers single edge failures only. This dual failure replacement paths problem was recently studied by Vassilevska Williams, Woldeghebriel and Xu [FOCS 2022] who designed a cubic time algorithm for general weighted digraphs which is conditionally optimal; in the same paper, for unweighted graphs where ω ≡ 1, the authors presented an algebraic algorithm with runtime Õ(n^{2.9146}), as well as a conditional lower bound of n^{8/3-o(1)} against combinatorial algorithms. However, it was unknown in their work whether fast matrix multiplication is necessary for a subcubic runtime in unweighted digraphs. As our primary result, we present the first truly subcubic combinatorial algorithm for dual failure replacement paths in unweighted digraphs. Our runtime is Õ(n^{3-1/18}). Besides, we also study algebraic algorithms for digraphs with small integer edge weights from {-M, -M+1, ⋯, M-1, M}. As our secondary result, we obtained a runtime of Õ(Mn^{2.8716}), which is faster than the previous bound of Õ(M^{2/3}n^{2.9144} + Mn^{2.8716}) from [Vassilevska Williams, Woldeghebriela and Xu, 2022].
@InProceedings{chechik_et_al:LIPIcs.ICALP.2024.41, author = {Chechik, Shiri and Zhang, Tianyi}, title = {{Faster Algorithms for Dual-Failure Replacement Paths}}, booktitle = {51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)}, pages = {41:1--41:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-322-5}, ISSN = {1868-8969}, year = {2024}, volume = {297}, editor = {Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.41}, URN = {urn:nbn:de:0030-drops-201849}, doi = {10.4230/LIPIcs.ICALP.2024.41}, annote = {Keywords: graph algorithms, shortest paths, replacement paths} }
Feedback for Dagstuhl Publishing