On the Streaming Complexity of Expander Decomposition

Authors Yu Chen , Michael Kapralov, Mikhail Makarov, Davide Mazzali



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2024.46.pdf
  • Filesize: 0.84 MB
  • 20 pages

Document Identifiers

Author Details

Yu Chen
  • EPFL, Lausanne, Switzerland
Michael Kapralov
  • EPFL, Lausanne, Switzerland
Mikhail Makarov
  • EPFL, Lausanne, Switzerland
Davide Mazzali
  • EPFL, Lausanne, Switzerland

Cite AsGet BibTex

Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali. On the Streaming Complexity of Expander Decomposition. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 46:1-46:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ICALP.2024.46

Abstract

In this paper we study the problem of finding (ε, ϕ)-expander decompositions of a graph in the streaming model, in particular for dynamic streams of edge insertions and deletions. The goal is to partition the vertex set so that every component induces a ϕ-expander, while the number of inter-cluster edges is only an ε fraction of the total volume. It was recently shown that there exists a simple algorithm to construct a (O(ϕ log n), ϕ)-expander decomposition of an n-vertex graph using Õ(n/ϕ²) bits of space [Filtser, Kapralov, Makarov, ITCS'23]. This result calls for understanding the extent to which a dependence in space on the sparsity parameter ϕ is inherent. We move towards answering this question on two fronts. We prove that a (O(ϕ log n), ϕ)-expander decomposition can be found using Õ(n) space, for every ϕ. At the core of our result is the first streaming algorithm for computing boundary-linked expander decompositions, a recently introduced strengthening of the classical notion [Goranci et al., SODA'21]. The key advantage is that a classical sparsifier [Fung et al., STOC'11], with size independent of ϕ, preserves the cuts inside the clusters of a boundary-linked expander decomposition within a multiplicative error. Notable algorithmic applications use sequences of expander decompositions, in particular one often repeatedly computes a decomposition of the subgraph induced by the inter-cluster edges (e.g., the seminal work of Spielman and Teng on spectral sparsifiers [Spielman, Teng, SIAM Journal of Computing 40(4)], or the recent maximum flow breakthrough [Chen et al., FOCS'22], among others). We prove that any streaming algorithm that computes a sequence of (O(ϕ log n), ϕ)-expander decompositions requires Ω̃(n/ϕ) bits of space, even in insertion only streams.

Subject Classification

ACM Subject Classification
  • Theory of computation → Streaming models
  • Theory of computation → Sparsification and spanners
  • Theory of computation → Sketching and sampling
  • Theory of computation → Lower bounds and information complexity
Keywords
  • Graph Sketching
  • Dynamic Streaming
  • Expander Decomposition

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Arpit Agarwal, Sanjeev Khanna, Huan Li, and Prathamesh Patil. Sublinear algorithms for hierarchical clustering. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022. URL: http://papers.nips.cc/paper_files/paper/2022/hash/16466b6c95c5924784486ac5a3feeb65-Abstract-Conference.html.
  2. AmirMahdi Ahmadinejad, John Peebles, Edward Pyne, Aaron Sidford, and Salil P. Vadhan. Singular value approximation and sparsifying random walks on directed graphs. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 846-854. IEEE, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00054.
  3. Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming model. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas, editors, Automata, Languages and Programming, 36th Internatilonal Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part II, volume 5556 of Lecture Notes in Computer Science, pages 328-338. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-02930-1_27.
  4. Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear measurements. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 459-467. SIAM, 2012. URL: https://doi.org/10.1137/1.9781611973099.40.
  5. Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners, and subgraphs. In Michael Benedikt, Markus Krötzsch, and Maurizio Lenzerini, editors, Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 5-14. ACM, 2012. URL: https://doi.org/10.1145/2213556.2213560.
  6. Vedat Levi Alev, Nima Anari, Lap Chi Lau, and Shayan Oveis Gharan. Graph clustering using effective resistance. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages 41:1-41:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPICS.ITCS.2018.41.
  7. András A. Benczúr and David R. Karger. Randomized approximation schemes for cuts and flows in capacitated graphs. SIAM J. Comput., 44(2):290-319, 2015. URL: https://doi.org/10.1137/070705970.
  8. Yi-Jun Chang, Seth Pettie, Thatchaphol Saranurak, and Hengjie Zhang. Near-optimal distributed triangle enumeration via expander decompositions. J. ACM, 68(3):21:1-21:36, 2021. URL: https://doi.org/10.1145/3446330.
  9. Yi-Jun Chang and Thatchaphol Saranurak. Improved distributed expander decomposition and nearly optimal triangle enumeration. In Peter Robinson and Faith Ellen, editors, Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 66-73. ACM, 2019. URL: https://doi.org/10.1145/3293611.3331618.
  10. Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar. On the hardness of approximating multicut and sparsest-cut. Comput. Complex., 15(2):94-114, 2006. URL: https://doi.org/10.1007/S00037-006-0210-9.
  11. Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 612-623. IEEE, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00064.
  12. Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali. On the streaming complexity of expander decomposition, 2024. URL: https://doi.org/10.48550/arXiv.2404.16701.
  13. Yu Chen, Sanjeev Khanna, and Huan Li. On weighted graph sparsification by linear sketching. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 474-485. IEEE, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00052.
  14. Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junxing Wang. Graph sparsification, spectral sketches, and faster resistance computation, via short cycle decompositions. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 361-372. IEEE Computer Society, 2018. URL: https://doi.org/10.1109/FOCS.2018.00042.
  15. Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol Saranurak. A deterministic algorithm for balanced cut with applications to dynamic connectivity, flows, and beyond. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1158-1167. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00111.
  16. Arnold Filtser, Michael Kapralov, and Mikhail Makarov. Expander decomposition in dynamic streams. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume 251 of LIPIcs, pages 50:1-50:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ITCS.2023.50.
  17. Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Panigrahi. A general framework for graph sparsification. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 71-80. ACM, 2011. URL: https://doi.org/10.1145/1993636.1993647.
  18. Gramoz Goranci, Monika Henzinger, Danupon Nanongkai, Thatchaphol Saranurak, Mikkel Thorup, and Christian Wulff-Nilsen. Fully dynamic exact edge connectivity in sublinear time. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 70-86. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH3.
  19. Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The expander hierarchy and its applications to dynamic graph algorithms. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2212-2228. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.132.
  20. Venkatesan Guruswami, Jun-Ting Hsieh, Pravesh K. Kothari, and Peter Manohar. Efficient algorithms for semirandom planted csps at the refutation threshold. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 307-327. IEEE, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00026.
  21. Yiding Hua, Rasmus Kyng, Maximilian Probst Gutenberg, and Zihang Wu. Maintaining expander decompositions via sparse cuts. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 48-69. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH2.
  22. Ravi Kannan, Santosh S. Vempala, and Adrian Vetta. On clusterings - good, bad and spectral. In 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA, pages 367-377. IEEE Computer Society, 2000. URL: https://doi.org/10.1109/SFCS.2000.892125.
  23. Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Towards tight bounds for spectral sparsification of hypergraphs. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 598-611. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451061.
  24. Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford. Single pass spectral sparsification in dynamic streams. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 561-570. IEEE Computer Society, 2014. URL: https://doi.org/10.1109/FOCS.2014.66.
  25. Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Navid Nouri, Aaron Sidford, and Jakab Tardos. Fast and space efficient spectral sparsification in dynamic streams. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1814-1833. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.111.
  26. David R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut algorithm. In Vijaya Ramachandran, editor, Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 25-27 January 1993, Austin, Texas, USA, pages 21-30. ACM/SIAM, 1993. URL: http://dl.acm.org/citation.cfm?id=313559.313605.
  27. David R. Karger. Random sampling in cut, flow, and network design problems. In Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 648-657. ACM, 1994. URL: https://doi.org/10.1145/195058.195422.
  28. Jason Li. Deterministic mincut in almost-linear time. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 384-395. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451114.
  29. Jason Li, Danupon Nanongkai, Debmalya Panigrahi, and Thatchaphol Saranurak. Near-linear time approximations for cut problems via fair cuts. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 240-275. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH10.
  30. Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster, stronger, and simpler. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2616-2635. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.162.
  31. Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In László Babai, editor, Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 81-90. ACM, 2004. URL: https://doi.org/10.1145/1007352.1007372.
  32. Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J. Comput., 40(4):981-1025, 2011. URL: https://doi.org/10.1137/08074489X.
  33. Luca Trevisan. Approximation algorithms for unique games. Theory Comput., 4(1):111-128, 2008. URL: https://doi.org/10.4086/TOC.2008.V004A005.