LIPIcs.ICALP.2024.58.pdf
- Filesize: 0.88 MB
- 19 pages
We provide new tradeoffs between approximation and running time for the decremental all-pairs shortest paths (APSP) problem. For undirected graphs with m edges and n nodes undergoing edge deletions, we provide four new approximate decremental APSP algorithms, two for weighted and two for unweighted graphs. Our first result is (2+ε)-APSP with total update time Õ(m^{1/2}n^{3/2}) (when m = n^{1+c} for any constant 0 < c < 1). Prior to our work the fastest algorithm for weighted graphs with approximation at most 3 had total Õ(mn) update time for (1+ε)-APSP [Bernstein, SICOMP 2016]. Our second result is (2+ε, W_{u,v})-APSP with total update time Õ(nm^{3/4}), where the second term is an additive stretch with respect to W_{u,v}, the maximum weight on the shortest path from u to v. Our third result is (2+ε)-APSP for unweighted graphs in Õ(m^{7/4}) update time, which for sparse graphs (m = o(n^{8/7})) is the first subquadratic (2+ε)-approximation. Our last result for unweighted graphs is (1+ε, 2(k-1))-APSP, for k ≥ 2, with Õ(n^{2-1/k}m^{1/k}) total update time (when m = n^{1+c} for any constant c > 0). For comparison, in the special case of (1+ε, 2)-approximation, this improves over the state-of-the-art algorithm by [Henzinger, Krinninger, Nanongkai, SICOMP 2016] with total update time of Õ(n^{2.5}). All of our results are randomized, work against an oblivious adversary, and have constant query time.
Feedback for Dagstuhl Publishing