We revisit the noisy binary search model of [Karp and Kleinberg, 2007], in which we have n coins with unknown probabilities p_i that we can flip. The coins are sorted by increasing p_i, and we would like to find where the probability crosses (to within ε) of a target value τ. This generalized the fixed-noise model of [Burnashev and Zigangirov, 1974], in which p_i = 1/2 ± ε, to a setting where coins near the target may be indistinguishable from it. It was shown in [Karp and Kleinberg, 2007] that Θ(1/ε² log n) samples are necessary and sufficient for this task. We produce a practical algorithm by solving two theoretical challenges: high-probability behavior and sharp constants. We give an algorithm that succeeds with probability 1-δ from 1/C_{τ, ε} ⋅ (log₂ n + O(log^{2/3} n log^{1/3} 1/(δ) + log 1/(δ))) samples, where C_{τ, ε} is the optimal such constant achievable. For δ > n^{-o(1)} this is within 1 + o(1) of optimal, and for δ ≪ 1 it is the first bound within constant factors of optimal.
@InProceedings{gretta_et_al:LIPIcs.ICALP.2024.75, author = {Gretta, Lucas and Price, Eric}, title = {{Sharp Noisy Binary Search with Monotonic Probabilities}}, booktitle = {51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)}, pages = {75:1--75:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-322-5}, ISSN = {1868-8969}, year = {2024}, volume = {297}, editor = {Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.75}, URN = {urn:nbn:de:0030-drops-202188}, doi = {10.4230/LIPIcs.ICALP.2024.75}, annote = {Keywords: fine-grained algorithms, randomized/probabilistic methods, sublinear/streaming algorithms, noisy binary search} }
Feedback for Dagstuhl Publishing