Optimal PSPACE-Hardness of Approximating Set Cover Reconfiguration

Authors Shuichi Hirahara , Naoto Ohsaka



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2024.85.pdf
  • Filesize: 0.9 MB
  • 18 pages

Document Identifiers

Author Details

Shuichi Hirahara
  • National Institute of Informatics, Tokyo, Japan
Naoto Ohsaka
  • CyberAgent, Inc., Tokyo, Japan

Cite AsGet BibTex

Shuichi Hirahara and Naoto Ohsaka. Optimal PSPACE-Hardness of Approximating Set Cover Reconfiguration. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 85:1-85:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ICALP.2024.85

Abstract

In the Minmax Set Cover Reconfiguration problem, given a set system ℱ over a universe 𝒰 and its two covers 𝒞^start and 𝒞^goal of size k, we wish to transform 𝒞^start into 𝒞^goal by repeatedly adding or removing a single set of ℱ while covering the universe 𝒰 in any intermediate state. Then, the objective is to minimize the maximum size of any intermediate cover during transformation. We prove that Minmax Set Cover Reconfiguration and Minmax Dominating Set Reconfiguration are PSPACE-hard to approximate within a factor of 2-(1/polyloglog N), where N is the size of the universe and the number of vertices in a graph, respectively, improving upon Ohsaka (SODA 2024) [Ohsaka, 2024] and Karthik C. S. and Manurangsi (2023) [Karthik C. S. and Manurangsi, 2023]. This is the first result that exhibits a sharp threshold for the approximation factor of any reconfiguration problem because both problems admit a 2-factor approximation algorithm as per Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and Uno (Theor. Comput. Sci., 2011) [Takehiro Ito et al., 2011]. Our proof is based on a reconfiguration analogue of the FGLSS reduction [Feige et al., 1996] from Probabilistically Checkable Reconfiguration Proofs of Hirahara and Ohsaka (STOC 2024) [Hirahara and Ohsaka, 2024]. We also prove that for any constant ε ∈ (0,1), Minmax Hypergraph Vertex Cover Reconfiguration on poly(ε^-1)-uniform hypergraphs is PSPACE-hard to approximate within a factor of 2-ε.

Subject Classification

ACM Subject Classification
  • Theory of computation → Problems, reductions and completeness
  • Theory of computation → Interactive proof systems
Keywords
  • reconfiguration problems
  • hardness of approximation
  • probabilistic proof systems
  • FGLSS reduction

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Noga Alon. Explicit expanders of every degree and size. Comb., 41(4):447-463, 2021. Google Scholar
  2. Noga Alon, Uriel Feige, Avi Wigderson, and David Zuckerman. Derandomized graph products. Comput. Complex., 5:60-75, 1995. Google Scholar
  3. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the hardness of approximation problems. J. ACM, 45(3):501-555, 1998. Google Scholar
  4. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of NP. J. ACM, 45(1):70-122, 1998. Google Scholar
  5. Marthe Bonamy, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Moritz Mühlenthaler, Akira Suzuki, and Kunihiro Wasa. Shortest reconfiguration of colorings under Kempe changes. In STACS, pages 35:1-35:14, 2020. Google Scholar
  6. Paul Bonsma. The complexity of rerouting shortest paths. Theor. Comput. Sci., 510:1-12, 2013. Google Scholar
  7. Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Finding paths between 3-colorings. J. Graph Theory, 67(1):69-82, 2011. Google Scholar
  8. Moses Charikar, MohammadTaghi Hajiaghayi, and Howard J. Karloff. Improved approximation algorithms for label cover problems. Algorithmica, 61(1):190-206, 2011. Google Scholar
  9. Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. Google Scholar
  10. Irit Dinur and David Steurer. Analytical approach to parallel repetition. In STOC, pages 624-633, 2014. Google Scholar
  11. Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634-652, 1998. Google Scholar
  12. Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Interactive proofs and the hardness of approximating cliques. J. ACM, 43(2):268-292, 1996. Google Scholar
  13. Parikshit Gopalan, Phokion G. Kolaitis, Elitza Maneva, and Christos H. Papadimitriou. The connectivity of Boolean satisfiability: Computational and structural dichotomies. SIAM J. Comput., 38(6):2330-2355, 2009. Google Scholar
  14. Johan Håstad. Clique is hard to approximate within n^1-ε. Acta Math., 182:105-142, 1999. Google Scholar
  15. Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798-859, 2001. Google Scholar
  16. Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theor. Comput. Sci., 343(1-2):72-96, 2005. Google Scholar
  17. Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. A K Peters, Ltd., 2009. Google Scholar
  18. Shuichi Hirahara and Naoto Ohsaka. Optimal PSPACE-hardness of approximating set cover reconfiguration. Electron. Colloquium Comput. Complex., pages TR24-039, 2024. Google Scholar
  19. Shuichi Hirahara and Naoto Ohsaka. Probabilistically checkable reconfiguration proofs and inapproximability of reconfiguration problems. In STOC, 2024. to appear. Google Scholar
  20. Duc A. Hoang. Combinatorial reconfiguration. https://reconf.wikidot.com/, 2023.
  21. Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications. Bull. Am. Math. Soc., 43(4):439-561, 2006. Google Scholar
  22. Takehiro Ito and Erik D. Demaine. Approximability of the subset sum reconfiguration problem. J. Comb. Optim., 28(3):639-654, 2014. Google Scholar
  23. Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems. Theor. Comput. Sci., 412(12-14):1054-1065, 2011. Google Scholar
  24. Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, and Yoshio Okamoto. Shortest reconfiguration of perfect matchings via alternating cycles. SIAM J. Discret. Math., 36(2):1102-1123, 2022. Google Scholar
  25. Marcin Kamiński, Paul Medvedev, and Martin Milanič. Shortest paths between shortest paths. Theor. Comput. Sci., 412(39):5205-5210, 2011. Google Scholar
  26. Karthik C. S. and Pasin Manurangsi. On inapproximability of reconfiguration problems: PSPACE-hardness and some tight NP-hardness results. CoRR, abs/2312.17140, 2023. Google Scholar
  27. Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization problems. J. ACM, 41(5):960-981, 1994. Google Scholar
  28. Sidhanth Mohanty, Ryan O'Donnell, and Pedro Paredes. Explicit near-Ramanujan graphs of every degree. SIAM J. Comput., 51(3):STOC20-1-STOC20-23, 2021. Google Scholar
  29. Amer E. Mouawad, Naomi Nishimura, Vinayak Pathak, and Venkatesh Raman. Shortest reconfiguration paths in the solution space of Boolean formulas. SIAM J. Discret. Math., 31(3):2185-2200, 2017. Google Scholar
  30. Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. Google Scholar
  31. Naoto Ohsaka. Gap preserving reductions between reconfiguration problems. In STACS, pages 49:1-49:18, 2023. Google Scholar
  32. Naoto Ohsaka. Gap amplification for reconfiguration problems. In SODA, pages 1345-1366, 2024. Google Scholar
  33. Naoto Ohsaka and Tatsuya Matsuoka. Reconfiguration problems on submodular functions. In WSDM, pages 764-774, 2022. Google Scholar
  34. Orr Paradise. Smooth and strong PCPs. Comput. Complex., 30(1):1, 2021. Google Scholar
  35. Jan van den Heuvel. The complexity of change. In Surveys in Combinatorics 2013, volume 409, pages 127-160. Cambridge University Press, 2013. Google Scholar