,
Jakub Łącki
,
Slobodan Mitrović,
Krzysztof Onak
,
Piotr Sankowski
Creative Commons Attribution 4.0 International license
We consider the PageRank problem in the dynamic setting, where the goal is to explicitly maintain an approximate PageRank vector π ∈ ℝⁿ for a graph under a sequence of edge insertions and deletions. Our main result is a complete characterization of the complexity of dynamic PageRank maintenance for both multiplicative and additive (L₁) approximations.
First, we establish matching lower and upper bounds for maintaining additive approximate PageRank in both incremental and decremental settings. In particular, we demonstrate that in the worst-case (1/α)^{Θ(log log n)} update time is necessary and sufficient for this problem, where α is the desired additive approximation. On the other hand, we demonstrate that the commonly employed ForwardPush approach performs substantially worse than this optimal runtime. Specifically, we show that ForwardPush requires Ω(n^{1-δ}) time per update on average, for any δ > 0, even in the incremental setting.
For multiplicative approximations, however, we demonstrate that the situation is significantly more challenging. Specifically, we prove that any algorithm that explicitly maintains a constant factor multiplicative approximation of the PageRank vector of a directed graph must have amortized update time Ω(n^{1-δ}), for any δ > 0, even in the incremental setting, thereby resolving a 13-year old open question of Bahmani et al. (VLDB 2010). This sharply contrasts with the undirected setting, where we show that poly log n update time is feasible, even in the fully dynamic setting under oblivious adversary.
@InProceedings{jayaram_et_al:LIPIcs.ICALP.2024.90,
author = {Jayaram, Rajesh and {\L}\k{a}cki, Jakub and Mitrovi\'{c}, Slobodan and Onak, Krzysztof and Sankowski, Piotr},
title = {{Dynamic PageRank: Algorithms and Lower Bounds}},
booktitle = {51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
pages = {90:1--90:19},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-322-5},
ISSN = {1868-8969},
year = {2024},
volume = {297},
editor = {Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.90},
URN = {urn:nbn:de:0030-drops-202336},
doi = {10.4230/LIPIcs.ICALP.2024.90},
annote = {Keywords: PageRank, dynamic algorithms, graph algorithms}
}