LIPIcs.ICALP.2024.90.pdf
- Filesize: 0.85 MB
- 19 pages
We consider the PageRank problem in the dynamic setting, where the goal is to explicitly maintain an approximate PageRank vector π ∈ ℝⁿ for a graph under a sequence of edge insertions and deletions. Our main result is a complete characterization of the complexity of dynamic PageRank maintenance for both multiplicative and additive (L₁) approximations. First, we establish matching lower and upper bounds for maintaining additive approximate PageRank in both incremental and decremental settings. In particular, we demonstrate that in the worst-case (1/α)^{Θ(log log n)} update time is necessary and sufficient for this problem, where α is the desired additive approximation. On the other hand, we demonstrate that the commonly employed ForwardPush approach performs substantially worse than this optimal runtime. Specifically, we show that ForwardPush requires Ω(n^{1-δ}) time per update on average, for any δ > 0, even in the incremental setting. For multiplicative approximations, however, we demonstrate that the situation is significantly more challenging. Specifically, we prove that any algorithm that explicitly maintains a constant factor multiplicative approximation of the PageRank vector of a directed graph must have amortized update time Ω(n^{1-δ}), for any δ > 0, even in the incremental setting, thereby resolving a 13-year old open question of Bahmani et al. (VLDB 2010). This sharply contrasts with the undirected setting, where we show that poly log n update time is feasible, even in the fully dynamic setting under oblivious adversary.
Feedback for Dagstuhl Publishing