LIPIcs.ICALP.2024.94.pdf
- Filesize: 0.77 MB
- 11 pages
An important area of research in exact algorithms is to solve Subset-Sum-type problems faster than meet-in-middle. In this paper we study Pigeonhole Equal Sums, a total search problem proposed by Papadimitriou (1994): given n positive integers w₁,… ,w_n of total sum ∑_{i = 1}ⁿ w_i < 2ⁿ-1, the task is to find two distinct subsets A, B ⊆ [n] such that ∑_{i ∈ A}w_i = ∑_{i ∈ B}w_i. Similar to the status of the Subset Sum problem, the best known algorithm for Pigeonhole Equal Sums runs in O^*(2^{n/2}) time, via either meet-in-middle or dynamic programming (Allcock, Hamoudi, Joux, Klingelhöfer, and Santha, 2022). Our main result is an improved algorithm for Pigeonhole Equal Sums in O^*(2^{0.4n}) time. We also give a polynomial-space algorithm in O^*(2^{0.75n}) time. Unlike many previous works in this area, our approach does not use the representation method, but rather exploits a simple structural characterization of input instances with few solutions.
Feedback for Dagstuhl Publishing