Fully Dynamic Strongly Connected Components in Planar Digraphs

Authors Adam Karczmarz , Marcin Smulewicz



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2024.95.pdf
  • Filesize: 0.78 MB
  • 20 pages

Document Identifiers

Author Details

Adam Karczmarz
  • University of Warsaw, Poland
  • IDEAS NCBR, Warsaw, Poland
Marcin Smulewicz
  • University of Warsaw, Poland

Cite AsGet BibTex

Adam Karczmarz and Marcin Smulewicz. Fully Dynamic Strongly Connected Components in Planar Digraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 95:1-95:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ICALP.2024.95

Abstract

In this paper we consider maintaining strongly connected components (SCCs) of a directed planar graph subject to edge insertions and deletions. We show a data structure maintaining an implicit representation of the SCCs within Õ(n^{6/7}) worst-case time per update. The data structure supports, in O(log²{n}) time, reporting vertices of any specified SCC (with constant overhead per reported vertex) and aggregating vertex information (e.g., computing the maximum label) over all the vertices of that SCC. Furthermore, it can maintain global information about the structure of SCCs, such as the number of SCCs, or the size of the largest SCC. To the best of our knowledge, no fully dynamic SCCs data structures with sublinear update time have been previously known for any major subclass of digraphs. Our result should be contrasted with the n^{1-o(1)} amortized update time lower bound conditional on SETH, which holds even for dynamically maintaining whether a general digraph has more than two SCCs.

Subject Classification

ACM Subject Classification
  • Theory of computation → Dynamic graph algorithms
Keywords
  • dynamic strongly connected components
  • dynamic strong connectivity
  • dynamic reachability
  • planar graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, pages 434-443. IEEE Computer Society, 2014. URL: https://doi.org/10.1109/FOCS.2014.53.
  2. Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Robert E. Tarjan. A new approach to incremental cycle detection and related problems. ACM Trans. Algorithms, 12(2):14:1-14:22, 2016. URL: https://doi.org/10.1145/2756553.
  3. Aaron Bernstein, Aditi Dudeja, and Seth Pettie. Incremental SCC maintenance in sparse graphs. In 29th Annual European Symposium on Algorithms, ESA 2021, volume 204 of LIPIcs, pages 14:1-14:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ESA.2021.14.
  4. Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic decremental reachability, scc, and shortest paths via directed expanders and congestion balancing. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, pages 1123-1134. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00108.
  5. Aaron Bernstein, Maximilian Probst, and Christian Wulff-Nilsen. Decremental strongly-connected components and single-source reachability in near-linear time. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pages 365-376. ACM, 2019. URL: https://doi.org/10.1145/3313276.3316335.
  6. Panagiotis Charalampopoulos and Adam Karczmarz. Single-source shortest paths and strong connectivity in dynamic planar graphs. J. Comput. Syst. Sci., 124:97-111, 2022. URL: https://doi.org/10.1016/j.jcss.2021.09.008.
  7. Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F. Italiano, Jakub Łącki, and Nikos Parotsidis. Decremental single-source reachability and strongly connected components in õ(m√n) total update time. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, pages 315-324. IEEE Computer Society, 2016. URL: https://doi.org/10.1109/FOCS.2016.42.
  8. Li Chen, Rasmus Kyng, Yang P. Liu, Simon Meierhans, and Maximilian Probst Gutenberg. Almost-linear time algorithms for incremental graphs: Cycle detection, sccs, s-t shortest path, and minimum-cost flow, 2023. URL: https://arxiv.org/abs/2311.18295.
  9. Krzysztof Diks and Piotr Sankowski. Dynamic plane transitive closure. In Algorithms - ESA 2007, 15th Annual European Symposium, Proceedings, pages 594-604, 2007. URL: https://doi.org/10.1007/978-3-540-75520-3_53.
  10. Jeff Erickson, Kyle Fox, and Luvsandondov Lkhamsuren. Holiest minimum-cost paths and flows in surface graphs. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 1319-1332, 2018. URL: https://doi.org/10.1145/3188745.3188904.
  11. Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest paths, and near linear time. J. Comput. Syst. Sci., 72(5):868-889, 2006. URL: https://doi.org/10.1016/j.jcss.2005.05.007.
  12. Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees, with applications. SIAM J. Comput., 14(4):781-798, 1985. URL: https://doi.org/10.1137/0214055.
  13. Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput., 16(6):1004-1022, 1987. URL: https://doi.org/10.1137/0216064.
  14. Harold N. Gabow. Path-based depth-first search for strong and biconnected components. Inf. Process. Lett., 74(3-4):107-114, 2000. URL: https://doi.org/10.1016/S0020-0190(00)00051-X.
  15. Pawel Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren Weimann. Voronoi diagrams on planar graphs, and computing the diameter in deterministic õ(n^5/3) time. SIAM J. Comput., 50(2):509-554, 2021. URL: https://doi.org/10.1137/18M1193402.
  16. Pawel Gawrychowski, Shay Mozes, Oren Weimann, and Christian Wulff-Nilsen. Better tradeoffs for exact distance oracles in planar graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 515-529. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975031.34.
  17. Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The expander hierarchy and its applications to dynamic graph algorithms. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2212-2228. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.132.
  18. Bernhard Haeupler, Telikepalli Kavitha, Rogers Mathew, Siddhartha Sen, and Robert Endre Tarjan. Incremental cycle detection, topological ordering, and strong component maintenance. ACM Trans. Algorithms, 8(1):3:1-3:33, 2012. URL: https://doi.org/10.1145/2071379.2071382.
  19. Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, pages 21-30. ACM, 2015. URL: https://doi.org/10.1145/2746539.2746609.
  20. Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM, 48(4):723-760, 2001. URL: https://doi.org/10.1145/502090.502095.
  21. Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Fully dynamic connectivity in o(log n(loglog n)^2) amortized expected time. TheoretiCS, 2, 2023. URL: https://doi.org/10.46298/THEORETICS.23.6.
  22. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367-375, 2001. URL: https://doi.org/10.1006/jcss.2000.1727.
  23. Giuseppe F. Italiano, Adam Karczmarz, Jakub Łącki, and Piotr Sankowski. Decremental single-source reachability in planar digraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 1108-1121. ACM, 2017. URL: https://doi.org/10.1145/3055399.3055480.
  24. Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Submatrix maximum queries in monge matrices and partial monge matrices, and their applications. ACM Trans. Algorithms, 13(2):26:1-26:42, 2017. URL: https://doi.org/10.1145/3039873.
  25. Adam Karczmarz and Marcin Smulewicz. On fully dynamic strongly connected components. In 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands, volume 274 of LIPIcs, pages 68:1-68:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ESA.2023.68.
  26. Philip N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pages 146-155, 2005. URL: http://dl.acm.org/citation.cfm?id=1070432.1070454.
  27. Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator decompositions for planar graphs in linear time. In Symposium on Theory of Computing Conference, STOC'13, Palo Alto, CA, USA, June 1-4, 2013, pages 505-514, 2013. URL: https://doi.org/10.1145/2488608.2488672.
  28. Philip N. Klein and Sairam Subramanian. A fully dynamic approximation scheme for shortest paths in planar graphs. Algorithmica, 22(3):235-249, 1998. URL: https://doi.org/10.1007/PL00009223.
  29. Yaowei Long and Seth Pettie. Planar distance oracles with better time-space tradeoffs. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2517-2537. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.149.
  30. Jakub Łącki. Improved deterministic algorithms for decremental reachability and strongly connected components. ACM Trans. Algorithms, 9(3):27:1-27:15, 2013. URL: https://doi.org/10.1145/2483699.2483707.
  31. Liam Roditty and Uri Zwick. Improved dynamic reachability algorithms for directed graphs. SIAM J. Comput., 37(5):1455-1471, 2008. URL: https://doi.org/10.1137/060650271.
  32. Piotr Sankowski. Subquadratic algorithm for dynamic shortest distances. In Computing and Combinatorics, 11th Annual International Conference, COCOON 2005, Kunming, China, August 16-29, 2005, Proceedings, volume 3595 of Lecture Notes in Computer Science, pages 461-470. Springer, 2005. URL: https://doi.org/10.1007/11533719_47.
  33. M. Sharir. A strong-connectivity algorithm and its applications in data flow analysis. Computers & Mathematics with Applications, 7(1):67-72, 1981. URL: https://doi.org/10.1016/0898-1221(81)90008-0.
  34. Sairam Subramanian. A fully dynamic data structure for reachability in planar digraphs. In Algorithms - ESA '93, First Annual European Symposium, Bad Honnef, Germany, September 30 - October 2, 1993, Proceedings, pages 372-383, 1993. URL: https://doi.org/10.1007/3-540-57273-2_72.
  35. Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146-160, 1972. URL: https://doi.org/10.1137/0201010.
  36. Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic matrix inverse: Improved algorithms and matching conditional lower bounds. In 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, pages 456-480. IEEE Computer Society, 2019. URL: https://doi.org/10.1109/FOCS.2019.00036.
  37. Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci., 348(2-3):357-365, 2005. URL: https://doi.org/10.1016/j.tcs.2005.09.023.
  38. Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1757-1769. SIAM, 2013. URL: https://doi.org/10.1137/1.9781611973105.126.