Cut Sparsification and Succinct Representation of Submodular Hypergraphs

Authors Yotam Kenneth , Robert Krauthgamer



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2024.97.pdf
  • Filesize: 0.8 MB
  • 17 pages

Document Identifiers

Author Details

Yotam Kenneth
  • Weizmann Institute of Science, Rehovot, Israel
Robert Krauthgamer
  • Weizmann Institute of Science, Rehovot, Israel

Cite AsGet BibTex

Yotam Kenneth and Robert Krauthgamer. Cut Sparsification and Succinct Representation of Submodular Hypergraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 97:1-97:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ICALP.2024.97

Abstract

In cut sparsification, all cuts of a hypergraph H = (V,E,w) are approximated within 1±ε factor by a small hypergraph H'. This widely applied method was generalized recently to a setting where the cost of cutting each hyperedge e is provided by a splitting function g_e: 2^e → ℝ_+. This generalization is called a submodular hypergraph when the functions {g_e}_{e ∈ E} are submodular, and it arises in machine learning, combinatorial optimization, and algorithmic game theory. Previous work studied the setting where H' is a reweighted sub-hypergraph of H, and measured the size of H' by the number of hyperedges in it. In this setting, we present two results: (i) all submodular hypergraphs admit sparsifiers of size polynomial in n = |V| and ε^{-1}; (ii) we propose a new parameter, called spread, and use it to obtain smaller sparsifiers in some cases. We also show that for a natural family of splitting functions, relaxing the requirement that H' be a reweighted sub-hypergraph of H yields a substantially smaller encoding of the cuts of H (almost a factor n in the number of bits). This is in contrast to graphs, where the most succinct representation is attained by reweighted subgraphs. A new tool in our construction of succinct representation is the notion of deformation, where a splitting function g_e is decomposed into a sum of functions of small description, and we provide upper and lower bounds for deformation of common splitting functions.

Subject Classification

ACM Subject Classification
  • Theory of computation → Sparsification and spanners
  • Theory of computation → Submodular optimization and polymatroids
  • Mathematics of computing → Hypergraphs
  • Theory of computation → Lower bounds and information complexity
Keywords
  • Cut Sparsification
  • Submodular Hypergraphs
  • Succinct Representation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and Richard Peng. On fully dynamic graph sparsifiers. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS, pages 335-344. IEEE Computer Society, 2016. URL: https://doi.org/10.1109/FOCS.2016.44.
  2. Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P. Woodruff, and Qin Zhang. On sketching quadratic forms. In Innovations in Theoretical Computer Science, ITCS'16, pages 311-319. ACM, 2016. URL: https://doi.org/10.1145/2840728.2840753.
  3. Alexandr Andoni, Anupam Gupta, and Robert Krauthgamer. Towards (1 + ε)-approximate flow sparsifiers. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 279-293. SIAM, 2014. Google Scholar
  4. Sepehr Assadi and Sahil Singla. Improved truthful mechanisms for combinatorial auctions with submodular bidders. SIGecom Exch., 18(1):19-27, 2020. URL: https://doi.org/10.1145/3440959.3440964.
  5. Nikhil Bansal, Ola Svensson, and Luca Trevisan. New notions and constructions of sparsification for graphs and hypergraphs. In 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, pages 910-928. IEEE Computer Society, 2019. URL: https://doi.org/10.1109/FOCS.2019.00059.
  6. Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsifiers. SIAM Rev., 56(2):315-334, 2014. URL: https://doi.org/10.1137/130949117.
  7. András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n²) time. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pages 47-55. ACM, 1996. URL: https://doi.org/10.1145/237814.237827.
  8. Charles Carlson, Alexandra Kolla, Nikhil Srivastava, and Luca Trevisan. Optimal lower bounds for sketching graph cuts. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2565-2569, 2019. URL: https://doi.org/10.1137/1.9781611975482.158.
  9. Ruoxu Cen, Yu Cheng, Debmalya Panigrahi, and Kevin Sun. Sparsification of directed graphs via cut balance. In 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, volume 198 of LIPIcs, pages 45:1-45:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.45.
  10. Yu Chen, Sanjeev Khanna, and Ansh Nagda. Near-linear size hypergraph cut sparsifiers. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages 61-72. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00015.
  11. Mahdi Cheraghchi, Adam R. Klivans, Pravesh Kothari, and Homin K. Lee. Submodular functions are noise stable. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pages 1586-1592. SIAM, 2012. URL: https://doi.org/10.1137/1.9781611973099.126.
  12. Michele Conforti and Gérard Cornuéjols. Submodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem. Discret. Appl. Math., 7(3):251-274, 1984. URL: https://doi.org/10.1016/0166-218X(84)90003-9.
  13. Marcel Kenji de Carli Silva, Nicholas J. A. Harvey, and Cristiane M. Sato. Sparse sums of positive semidefinite matrices. ACM Trans. Algorithms, 12(1):9:1-9:17, 2016. URL: https://doi.org/10.1145/2746241.
  14. Nikhil R. Devanur, Shaddin Dughmi, Roy Schwartz, Ankit Sharma, and Mohit Singh. On the approximation of submodular functions. CoRR, abs/1304.4948, 2013. URL: https://arxiv.org/abs/1304.4948.
  15. Shahar Dobzinski and Michael Schapira. An improved approximation algorithm for combinatorial auctions with submodular bidders. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, pages 1064-1073. ACM Press, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109675.
  16. Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM J. Comput., 39(1):122-142, 2009. URL: https://doi.org/10.1137/070680977.
  17. Uriel Feige and Jan Vondrák. Approximation algorithms for allocation problems: Improving the factor of 1 - 1/e. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pages 667-676. IEEE Computer Society, 2006. URL: https://doi.org/10.1109/FOCS.2006.14.
  18. Vitaly Feldman and Pravesh Kothari. Learning coverage functions and private release of marginals. In Proceedings of The 27th Conference on Learning Theory, COLT 2014, volume 35 of JMLR Workshop and Conference Proceedings, pages 679-702. JMLR.org, 2014. URL: http://proceedings.mlr.press/v35/feldman14a.html.
  19. Vitaly Feldman, Pravesh Kothari, and Jan Vondrák. Representation, approximation and learning of submodular functions using low-rank decision trees. In COLT 2013 - The 26th Annual Conference on Learning Theory, volume 30 of JMLR Workshop and Conference Proceedings, pages 711-740. JMLR.org, 2013. URL: http://proceedings.mlr.press/v30/Feldman13.html.
  20. Vitaly Feldman and Jan Vondrák. Optimal bounds on approximation of submodular and XOS functions by juntas. SIAM J. Comput., 45(3):1129-1170, 2016. URL: https://doi.org/10.1137/140958207.
  21. Wai-Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Panigrahi. A general framework for graph sparsification. SIAM J. Comput., 48(4):1196-1223, 2019. URL: https://doi.org/10.1137/16M1091666.
  22. Michel X. Goemans, Nicholas J. A. Harvey, Satoru Iwata, and Vahab S. Mirrokni. Approximating submodular functions everywhere. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pages 535-544. SIAM, 2009. URL: https://doi.org/10.1137/1.9781611973068.59.
  23. Ryan Gomes and Andreas Krause. Budgeted nonparametric learning from data streams. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 391-398. Omnipress, 2010. URL: https://icml.cc/Conferences/2010/papers/433.pdf.
  24. Anupam Gupta, Moritz Hardt, Aaron Roth, and Jonathan R. Ullman. Privately releasing conjunctions and the statistical query barrier. SIAM J. Comput., 42(4):1494-1520, 2013. URL: https://doi.org/10.1137/110857714.
  25. Arun Jambulapati, James R. Lee, Yang P. Liu, and Aaron Sidford. Sparsifying sums of norms. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, pages 1953-1962. IEEE, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00119.
  26. Arun Jambulapati, Victor Reis, and Kevin Tian. Linear-sized sparsifiers via near-linear time discrepancy theory. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 5169-5208. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977912.186.
  27. Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Towards tight bounds for spectral sparsification of hypergraphs. In STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 598-611. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451061.
  28. Sanjeev Khanna, Aaron Putterman, and Madhu Sudan. Code sparsification and its applications. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 5145-5168. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977912.185.
  29. Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015, pages 367-376. ACM, 2015. URL: https://doi.org/10.1145/2688073.2688093.
  30. Jannik Kudla and Stanislav Zivný. Sparsification of monotone k-submodular functions of low curvature. CoRR, abs/2302.03143, 2023. URL: https://doi.org/10.48550/arXiv.2302.03143.
  31. Pan Li and Olgica Milenkovic. Inhomogeneous hypergraph clustering with applications. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, pages 2308-2318, 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/a50abba8132a77191791390c3eb19fe7-Abstract.html.
  32. Pan Li and Olgica Milenkovic. Submodular hypergraphs: p-laplacians, cheeger inequalities and spectral clustering. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, volume 80 of Proceedings of Machine Learning Research, pages 3020-3029. PMLR, 2018. URL: http://proceedings.mlr.press/v80/li18e.html.
  33. Hui Lin and Jeff A. Bilmes. A class of submodular functions for document summarization. In The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference 2011, pages 510-520. The Association for Computer Linguistics, 2011. URL: https://aclanthology.org/P11-1052/.
  34. Meng Liu, Nate Veldt, Haoyu Song, Pan Li, and David F. Gleich. Strongly local hypergraph diffusions for clustering and semi-supervised learning. In WWW '21: The Web Conference 2021, pages 2092-2103. ACM / IW3C2, 2021. URL: https://doi.org/10.1145/3442381.3449887.
  35. S Thomas McCormick. Submodular function minimization. Handbooks in operations research and management science, 12:321-391, 2005. Google Scholar
  36. Kazusato Oko, Shinsaku Sakaue, and Shin-ichi Tanigawa. Nearly tight spectral sparsification of directed hypergraphs. In 50th International Colloquium on Automata, Languages, and Programming, ICALP 2023, volume 261 of LIPIcs, pages 94:1-94:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.94.
  37. Yosef Pogrow. Solving symmetric diagonally dominant linear systems in sublinear time (and some observations on graph sparsification). Master’s thesis, Weizmann Institute of Science, 2017. URL: https://www.wisdom.weizmann.ac.il/~robi/files/YosefPogrow-MScThesis-2017_12.pdf.
  38. Kent Quanrud. Quotient sparsification for submodular functions. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 5209-5248. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977912.187.
  39. Akbar Rafiey and Yuichi Yoshida. Sparsification of decomposable submodular functions. In Thirty-Sixth AAAI Conference on Artificial Intelligence, pages 10336-10344. AAAI Press, 2022. URL: https://doi.org/10.1609/aaai.v36i9.21275.
  40. Tasuku Soma and Yuichi Yoshida. Spectral sparsification of hypergraphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pages 2570-2581. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.159.
  41. Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM J. Comput., 40(6):1913-1926, 2011. URL: https://doi.org/10.1137/080734029.
  42. Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J. Comput., 40(4):981-1025, 2011. URL: https://doi.org/10.1137/08074489X.
  43. Sebastian Tschiatschek, Rishabh K. Iyer, Haochen Wei, and Jeff A. Bilmes. Learning mixtures of submodular functions for image collection summarization. In Advances in Neural Information Processing Systems 27 (NeurIPS 2014), pages 1413-1421, 2014. URL: https://proceedings.neurips.cc/paper/2014/hash/a8e864d04c95572d1aece099af852d0a-Abstract.html.
  44. Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Minimizing localized ratio cut objectives in hypergraphs. In KDD '20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1708-1718. ACM, 2020. URL: https://doi.org/10.1145/3394486.3403222.
  45. Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Approximate decomposable submodular function minimization for cardinality-based components. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021), pages 3744-3756, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html.
  46. Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Hypergraph cuts with general splitting functions. SIAM Rev., 64(3):650-685, 2022. URL: https://doi.org/10.1137/20m1321048.
  47. Jan Vondrák. Submodularity and curvature: The optimal algorithm (combinatorial optimization and discrete algorithms). RIMS Kokyuroku Bessatsu, 23:253-266, 2010. URL: http://hdl.handle.net/2433/177046.
  48. Yu Zhu, Boning Li, and Santiago Segarra. Hypergraph 1-spectral clustering with general submodular weights. In 56th Asilomar Conference on Signals, Systems, and Computers, ACSSC 2022, pages 935-939. IEEE, 2022. URL: https://doi.org/10.1109/IEEECONF56349.2022.10052065.