Edit distance similarity search, also called approximate pattern matching, is a fundamental problem with widespread database applications. The goal of the problem is to preprocess n strings of length d, to quickly answer queries q of the form: if there is a database string within edit distance r of q, return a database string within edit distance cr of q. Previous approaches to this problem either rely on very large (superconstant) approximation ratios c, or very small search radii r. Outside of a narrow parameter range, these solutions are not competitive with trivially searching through all n strings. In this work we give a simple and easy-to-implement hash function that can quickly answer queries for a wide range of parameters. Specifically, our strategy can answer queries in time Õ(d3^rn^{1/c}). The best known practical results require c ≫ r to achieve any correctness guarantee; meanwhile, the best known theoretical results are very involved and difficult to implement, and require query time that can be loosely bounded below by 24^r. Our results significantly broaden the range of parameters for which there exist nontrivial theoretical bounds, while retaining the practicality of a locality-sensitive hash function.
@InProceedings{mccauley:LIPIcs.ICDT.2021.21, author = {McCauley, Samuel}, title = {{Approximate Similarity Search Under Edit Distance Using Locality-Sensitive Hashing}}, booktitle = {24th International Conference on Database Theory (ICDT 2021)}, pages = {21:1--21:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-179-5}, ISSN = {1868-8969}, year = {2021}, volume = {186}, editor = {Yi, Ke and Wei, Zhewei}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2021.21}, URN = {urn:nbn:de:0030-drops-137299}, doi = {10.4230/LIPIcs.ICDT.2021.21}, annote = {Keywords: edit distance, approximate pattern matching, approximate nearest neighbor, similarity search, locality-sensitive hashing} }
Feedback for Dagstuhl Publishing