The Dominating Set Problem in Geometric Intersection Graphs

Authors Mark de Berg, Sándor Kisfaludi-Bak, Gerhard Woeginger

Thumbnail PDF


  • Filesize: 0.76 MB
  • 12 pages

Document Identifiers

Author Details

Mark de Berg
Sándor Kisfaludi-Bak
Gerhard Woeginger

Cite AsGet BibTex

Mark de Berg, Sándor Kisfaludi-Bak, and Gerhard Woeginger. The Dominating Set Problem in Geometric Intersection Graphs. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 14:1-14:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


We study the parameterized complexity of dominating sets in geometric intersection graphs. In one dimension, we investigate intersection graphs induced by translates of a fixed pattern Q that consists of a finite number of intervals and a finite number of isolated points. We prove that Dominating Set on such intersection graphs is polynomially solvable whenever Q contains at least one interval, and whenever Q contains no intervals and for any two point pairs in Q the distance ratio is rational. The remaining case where Q contains no intervals but does contain an irrational distance ratio is shown to be NP-complete and contained in FPT (when parameterized by the solution size). In two and higher dimensions, we prove that Dominating Set is contained in W[1] for intersection graphs of semi-algebraic sets with constant description complexity. This generalizes known results from the literature. Finally, we establish W[1]-hardness for a large class of intersection graphs.
  • dominating set
  • intersection graph
  • W-hierarchy


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Dennis S. Arnon, George E. Collins, and Scott McCallum. Cylindrical algebraic decomposition I: the basic algorithm. SIAM J. Comput., 13(4):865-877, 1984. URL:
  2. Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational Geometry: Algorithms and Applications. Springer-Verlag, 3rd edition, 2008. Google Scholar
  3. Maw-Shang Chang. Efficient algorithms for the domination problems on interval and circular-arc graphs. SIAM J. Comput., 27(6):1671-1694, 1998. URL:
  4. Mark de Berg, Sándor Kisfaludi-Bak, and Gerhard Woeginger. The dominating set problem in geometric intersection graphs. CoRR, abs/1709.05182, 2017. URL:
  5. Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness I: basic results. SIAM J. Comput., 24(4):873-921, 1995. URL:
  6. Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci., 410(1):53-61, 2009. URL:
  7. Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2006. URL:
  8. Sariel Har-Peled. Being fat and friendly is not enough. arXiv preprint arXiv:0908.2369, 2009. Google Scholar
  9. Teresa W. Haynes, Stephen T. Hedetniemi, and Peter J. Slater. Domination in Graphs: Advanced Topics. Pure and Applied Mathematics. Marcel Dekker, Inc., 1998. Google Scholar
  10. Dániel Marx. Parameterized complexity of independence and domination on geometric graphs. In Hans L. Bodlaender and Michael A. Langston, editors, Parameterized and Exact Computation, Second International Workshop, IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Proceedings, volume 4169 of Lecture Notes in Computer Science, pages 154-165. Springer, 2006. URL:
  11. Dániel Marx and Michał Pilipczuk. Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams. arXiv preprint arXiv:1504.05476, 2015. Google Scholar
  12. Venkatesh Raman and Saket Saurabh. Short cycles make W -hard problems hard: FPT algorithms for W -hard problems in graphs with no short cycles. Algorithmica, 52(2):203-225, 2008. URL:
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail