Exploring the Kernelization Borders for Hitting Cycles

Authors Akanksha Agrawal, Pallavi Jain, Lawqueen Kanesh, Pranabendu Misra, Saket Saurabh

Thumbnail PDF


  • Filesize: 0.55 MB
  • 14 pages

Document Identifiers

Author Details

Akanksha Agrawal
  • Institute of Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary
Pallavi Jain
  • Institute of Mathematical Sciences, HBNI, Chennai, India
Lawqueen Kanesh
  • Institute of Mathematical Sciences, HBNI, Chennai, India
Pranabendu Misra
  • University of Bergen, Bergen, Norway
Saket Saurabh
  • Institute of Mathematical Sciences, HBNI, Chennai, India

Cite AsGet BibTex

Akanksha Agrawal, Pallavi Jain, Lawqueen Kanesh, Pranabendu Misra, and Saket Saurabh. Exploring the Kernelization Borders for Hitting Cycles. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 14:1-14:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


A generalization of classical cycle hitting problems, called conflict version of the problem, is defined as follows. An input is undirected graphs G and H on the same vertex set, and a positive integer k, and the objective is to decide whether there exists a vertex subset X subseteq V(G) such that it intersects all desired "cycles" (all cycles or all odd cycles or all even cycles) and X is an independent set in H. In this paper we study the conflict version of classical Feedback Vertex Set, and Odd Cycle Transversal problems, from the view point of kernelization complexity. In particular, we obtain the following results, when the conflict graph H belongs to the family of d-degenerate graphs. 1) CF-FVS admits a O(k^{O(d)}) kernel. 2) CF-OCT does not admit polynomial kernel (even when H is 1-degenerate), unless NP subseteq coNP/poly. For our kernelization algorithm we exploit ideas developed for designing polynomial kernels for the classical Feedback Vertex Set problem, as well as, devise new reduction rules that exploit degeneracy crucially. Our main conceptual contribution here is the notion of "k-independence preserver". Informally, it is a set of "important" vertices for a given subset X subseteq V(H), that is enough to capture the independent set property in H. We show that for d-degenerate graph independence preserver of size k^{O(d)} exists, and can be used in designing polynomial kernel.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
  • Parameterized Complexity
  • Kernelization
  • Conflict-free problems
  • Feedback Vertex Set
  • Even Cycle Transversal
  • Odd Cycle Transversal


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Esther M. Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Matthew J. Katz, Joseph S. B. Mitchell, and Marina Simakov. Choice is Hard. In ISAAC, pages 318-328, 2015. Google Scholar
  2. Esther M. Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Matthew J. Katz, Joseph S. B. Mitchell, and Marina Simakov. Conflict-free Covering. In CCCG, pages 17-23, 2015. Google Scholar
  3. Aritra Banik, Fahad Panolan, Venkatesh Raman, and Vibha Sahlot. Fréchet Distance Between a Line and Avatar Point Set. FSTTCS, pages 32:1-32:14, 2016. Google Scholar
  4. Hans L. Bodlaender. On disjoint cycles. In WG, volume 570, pages 230-238, 1992. Google Scholar
  5. Hans L. Bodlaender. A Cubic Kernel for Feedback Vertex Set. In STACS, volume 4393, pages 320-331, 2007. Google Scholar
  6. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization Lower Bounds by Cross-Composition. J. Discrete Math., 28:277-305, 2014. Google Scholar
  7. Kevin Burrage, Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston, Shev Mac, and Frances A. Rosamond. The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel. In IWPEC, volume 4169, pages 192-202, 2006. Google Scholar
  8. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. Google Scholar
  9. Andreas Darmann, Ulrich Pferschy, and Joachim Schauer. Determining a Minimum Spanning Tree with Disjunctive Constraints. In ADT, volume 5783, pages 414-423, 2009. Google Scholar
  10. Andreas Darmann, Ulrich Pferschy, Joachim Schauer, and Gerhard J. Woeginger. Paths, trees and matchings under disjunctive constraints. Discrete Applied Mathematics, 159(16):1726-1735, 2011. Google Scholar
  11. Rodney G. Downey and Michael R. Fellows. Fixed Parameter Tractability and Completeness. In Complexity Theory: Current Research, pages 191-225, 1992. Google Scholar
  12. Leah Epstein, Lene M. Favrholdt, and Asaf Levin. Online variable-sized bin packing with conflicts. Discrete Optimization, 8(2):333-343, 2011. Google Scholar
  13. Guy Even, Magnús M. Halldórsson, Lotem Kaplan, and Dana Ron. Scheduling with conflicts: online and offline algorithms. J. Scheduling, 12(2):199-224, 2009. Google Scholar
  14. Pallavi Jain, Lawqueen Kanesh, and Pranabendu Misra. Conflict Free Version of Covering Problems on Graphs: Classical and Parameterized. CSR, pages 194-206, 2018. Google Scholar
  15. Viggo Kann. Polynomially bounded minimization problems which are hard to approximate. In ICALP, pages 52-63, 1993. Google Scholar
  16. Stefan Kratsch and Magnus Wahlström. Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal. ACM Trans. Algorithms, 10(4):20:1-20:15, 2014. Google Scholar
  17. Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Roohani Sharma, and Meirav Zehavi. Covering Small Independent Sets and Separators with Applications to Parameterized Algorithms. In SODA, pages 2785-2800, 2018. Google Scholar
  18. David W. Matula and Leland L. Beck. Smallest-Last Ordering and clustering and Graph Coloring Algorithms. J. ACM, 30(3):417-427, 1983. Google Scholar
  19. Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, and Saket Saurabh. On Parameterized Independent Feedback Vertex Set. Theor. Comput. Sci., 461:65-75, 2012. Google Scholar
  20. Pranabendu Misra, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Parameterized Algorithms for Even Cycle Transversal. In WG, volume 7551, pages 172-183, 2012. Google Scholar
  21. Ulrich Pferschy and Joachim Schauer. The Maximum Flow Problem with Conflict and Forcing Conditions. In INOC, volume 6701, pages 289-294, 2011. Google Scholar
  22. Ulrich Pferschy and Joachim Schauer. The maximum flow problem with disjunctive constraints. J. Comb. Optim., 26(1):109-119, 2013. Google Scholar
  23. Ulrich Pferschy and Joachim Schauer. Approximation of knapsack problems with conflict and forcing graphs. J. Comb. Optim., 33(4):1300-1323, 2017. Google Scholar
  24. Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res. Lett., 32(4):299-301, 2004. Google Scholar
  25. Stéphan Thomassé. A 4k^2 kernel for feedback vertex set. ACM Trans. Algorithms, 6(2):32:1-32:8, 2010. Google Scholar