We study two variants of Maximum Cut, which we call Connected Maximum Cut and Maximum Minimal Cut, in this paper. In these problems, given an unweighted graph, the goal is to compute a maximum cut satisfying some connectivity requirements. Both problems are known to be NP-complete even on planar graphs whereas Maximum Cut on planar graphs is solvable in polynomial time. We first show that these problems are NP-complete even on planar bipartite graphs and split graphs. Then we give parameterized algorithms using graph parameters such as clique-width, tree-width, and twin-cover number. Finally, we obtain FPT algorithms with respect to the solution size.
@InProceedings{eto_et_al:LIPIcs.IPEC.2019.13, author = {Eto, Hiroshi and Hanaka, Tesshu and Kobayashi, Yasuaki and Kobayashi, Yusuke}, title = {{Parameterized Algorithms for Maximum Cut with Connectivity Constraints}}, booktitle = {14th International Symposium on Parameterized and Exact Computation (IPEC 2019)}, pages = {13:1--13:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-129-0}, ISSN = {1868-8969}, year = {2019}, volume = {148}, editor = {Jansen, Bart M. P. and Telle, Jan Arne}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2019.13}, URN = {urn:nbn:de:0030-drops-114747}, doi = {10.4230/LIPIcs.IPEC.2019.13}, annote = {Keywords: Maximum cut, Parameterized algorithm, NP-hardness, Graph parameter} }
Feedback for Dagstuhl Publishing