Finding Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear Time

Author Thekla Hamm



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2019.20.pdf
  • Filesize: 0.57 MB
  • 14 pages

Document Identifiers

Author Details

Thekla Hamm
  • Algorithms and Complexity Group, TU Wien, Vienna, Austria

Cite AsGet BibTex

Thekla Hamm. Finding Linear Arrangements of Hypergraphs with Bounded Cutwidth in Linear Time. In 14th International Symposium on Parameterized and Exact Computation (IPEC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 148, pp. 20:1-20:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.IPEC.2019.20

Abstract

Cutwidth is a fundamental graph layout parameter. It generalises to hypergraphs in a natural way and has been studied in a wide range of contexts. For graphs it is known that for a fixed constant k there is a linear time algorithm that for any given G, decides whether G has cutwidth at most k and, in the case of a positive answer, outputs a corresponding linear arrangement. We show that such an algorithm also exists for hypergraphs.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Permutations and combinations
  • Mathematics of computing → Hypergraphs
  • Theory of computation → Dynamic graph algorithms
Keywords
  • Fixed parameter linear
  • Path decomposition
  • Hypergraph

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Hans L. Bodlaender. A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM Journal on Computing, 25:1305-1317, December 1996. URL: https://doi.org/10.1137/S0097539793251219.
  2. Hans L. Bodlaender and Ton Kloks. Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs. Journal of Algorithms, 21(2):358-402, 1996. URL: https://doi.org/10.1006/jagm.1996.0049.
  3. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer Publishing Company, Incorporated, 1st edition, 2015. Google Scholar
  4. Jisu Jeong, Eun Jung Kim, and Sang-il Oum. Constructive algorithm for path-width of matroids. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1695-1704, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch116.
  5. Jens Lagergren and Stefan Arnborg. Finding minimal forbidden minors using a finite congruence. In Javier Leach Albert, Burkhard Monien, and Mario Rodríguez Artalejo, editors, Automata, Languages and Programming, pages 532-543, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg. Google Scholar
  6. Fillia Makedon and Ivan Hal Sudborough. On Minimizing Width in Linear Layouts. Discrete Appl. Math., 23(3):243-265, June 1989. URL: https://doi.org/10.1016/0166-218X(89)90016-4.
  7. Fillia S. Makedon, Christos H. Papadimitriou, and Ivan H. Sudborough. Topological bandwidth. In Giorgio Ausiello and Marco Protasi, editors, CAAP'83, pages 317-331, Berlin, Heidelberg, 1983. Springer Berlin Heidelberg. Google Scholar
  8. Zevi Miller and Ivan Hal Sudborough. A Polynomial Algorithm for Recognizing Bounded Cutwidth in Hypergraphs. Mathematical Systems Theory, 24(1):11-40, 1991. URL: https://doi.org/10.1007/BF02090388.
  9. Burkhard Monien and Ivan Hal Sudborough. Min Cut is NP-Complete for Edge Weighted Treees. Theor. Comput. Sci., 58:209-229, 1988. Google Scholar
  10. Neil Robertson and P.D. Seymour. Graph minors. I. Excluding a forest. Journal of Combinatorial Theory, Series B, 35(1):39-61, 1983. URL: https://doi.org/10.1016/0095-8956(83)90079-5.
  11. Dimitrios M. Thilikos, Maria Serna, and Hans L. Bodlaender. Cutwidth I: A linear time fixed parameter algorithm. Journal of Algorithms, 56(1):1-24, 2005. URL: https://doi.org/10.1016/j.jalgor.2004.12.001.
  12. Dimitrios M. Thilikos, Maria Serna, and Hans L. Bodlaender. Cutwidth II: Algorithms for partial w-trees of bounded degree. Journal of Algorithms, 56(1):25-49, 2005. URL: https://doi.org/10.1016/j.jalgor.2004.12.003.
  13. René van Bevern. Fixed-parameter linear-time algorithms for NP-hard graph and hypergraph problems arising in industrial applications. PhD thesis, Berlin Institute of Technology, 2014. URL: http://d-nb.info/1058974750.
  14. René van Bevern, Rodney G. Downey, Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond. Myhill-Nerode Methods for Hypergraphs. Algorithmica, 73(4):696-729, December 2015. URL: https://doi.org/10.1007/s00453-015-9977-x.
  15. Dong Wang, Edmund M. Clarke, Yunshan Zhu, and James H. Kukula. Using cutwidth to improve symbolic simulation and Boolean satisfiability. In Proceedings of the Sixth IEEE International High-Level Design Validation and Test Workshop 2001, Monterey, California, USA, November 7-9, 2001, pages 165-170, 2001. URL: https://doi.org/10.1109/HLDVT.2001.972824.