Kernelizing Temporal Exploration Problems

Authors Emmanuel Arrighi , Fedor V. Fomin , Petr A. Golovach , Petra Wolf



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2023.1.pdf
  • Filesize: 0.93 MB
  • 18 pages

Document Identifiers

Author Details

Emmanuel Arrighi
  • University of Bergen, Norway
  • University of Trier, Germany
Fedor V. Fomin
  • University of Bergen, Norway
Petr A. Golovach
  • University of Bergen, Norway
Petra Wolf
  • University of Bergen, Norway

Cite As Get BibTex

Emmanuel Arrighi, Fedor V. Fomin, Petr A. Golovach, and Petra Wolf. Kernelizing Temporal Exploration Problems. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 1:1-1:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.IPEC.2023.1

Abstract

We study the kernelization of exploration problems on temporal graphs. A temporal graph consists of a finite sequence of snapshot graphs 𝒢 = (G₁, G₂, … , G_L) that share a common vertex set but might have different edge sets. The non-strict temporal exploration problem (NS-TEXP for short) introduced by Erlebach and Spooner, asks if a single agent can visit all vertices of a given temporal graph where the edges traversed by the agent are present in non-strict monotonous time steps, i.e., the agent can move along the edges of a snapshot graph with infinite speed. The exploration must at the latest be completed in the last snapshot graph. The optimization variant of this problem is the k-arb NS-TEXP problem, where the agent’s task is to visit at least k vertices of the temporal graph. We show that under standard computational complexity assumptions, neither of the problems NS-TEXP nor k-arb NS-TEXP allow for polynomial kernels in the standard parameters: number of vertices n, lifetime L, number of vertices to visit k, and maximal number of connected components per time step γ; as well as in the combined parameters L+k, L + γ, and k+γ. On the way to establishing these lower bounds, we answer a couple of questions left open by Erlebach and Spooner.
We also initiate the study of structural kernelization by identifying a new parameter of a temporal graph p(𝒢) = ∑_{i=1}^L (|E(G_i)|) - |V(G)| + 1. Informally, this parameter measures how dynamic the temporal graph is. Our main algorithmic result is the construction of a polynomial (in p(𝒢)) kernel for the more general Weighted k-arb NS-TEXP problem, where weights are assigned to the vertices and the task is to find a temporal walk of weight at least k.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
  • Theory of computation → Problems, reductions and completeness
Keywords
  • Temporal graph
  • temporal exploration
  • computational complexity
  • kernel

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Duncan Adamson, Vladimir V. Gusev, Dmitriy S. Malyshev, and Viktor Zamaraev. Faster exploration of some temporal graphs. In James Aspnes and Othon Michail, editors, 1st Symposium on Algorithmic Foundations of Dynamic Networks, SAND 2022, March 28-30, 2022, Virtual Conference, volume 221 of LIPIcs, pages 5:1-5:10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.SAND.2022.5.
  2. Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844-856, 1995. URL: https://doi.org/10.1145/210332.210337.
  3. Emmanuel Arrighi, Fedor V. Fomin, Petr A. Golovach, and Petra Wolf. Kernelizing temporal exploration problems. CoRR, abs/2302.10110, 2023. URL: https://doi.org/10.48550/arXiv.2302.10110.
  4. Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On problems without polynomial kernels. Journal of Computer and System Sciences, 75(8):423-434, 2009. URL: https://doi.org/10.1016/j.jcss.2009.04.001.
  5. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by cross-composition. SIAM J. Discret. Math., 28(1):277-305, 2014. URL: https://doi.org/10.1137/120880240.
  6. Hans L. Bodlaender and Tom C. van der Zanden. On exploring always-connected temporal graphs of small pathwidth. Inf. Process. Lett., 142:68-71, 2019. URL: https://doi.org/10.1016/j.ipl.2018.10.016.
  7. Marin Bougeret and Ignasi Sau. How much does a treedepth modulator help to obtain polynomial kernels beyond sparse graphs? Algorithmica, 81(10):4043-4068, 2019. URL: https://doi.org/10.1007/s00453-018-0468-8.
  8. Benjamin Merlin Bumpus and Kitty Meeks. Edge exploration of temporal graphs. Algorithmica, pages 1-29, 2022. Google Scholar
  9. Sobin C. C., Vaskar Raychoudhury, Gustavo Marfia, and Ankita Singla. A survey of routing and data dissemination in delay tolerant networks. J. Netw. Comput. Appl., 67:128-146, 2016. URL: https://doi.org/10.1016/j.jnca.2016.01.002.
  10. Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distributed Syst., 27(5):387-408, 2012. URL: https://doi.org/10.1080/17445760.2012.668546.
  11. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company, 2001. Google Scholar
  12. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  13. Rodney G. Downey and Michael R. Fellows. Parameterized complexity. Springer-Verlag, New York, 1999. Google Scholar
  14. Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration. J. Comput. Syst. Sci., 119:1-18, 2021. URL: https://doi.org/10.1016/j.jcss.2021.01.005.
  15. Thomas Erlebach, Frank Kammer, Kelin Luo, Andrej Sajenko, and Jakob T. Spooner. Two moves per time step make a difference. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 141:1-141:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.141.
  16. Thomas Erlebach and Jakob T. Spooner. Faster exploration of degree-bounded temporal graphs. In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, volume 117 of LIPIcs, pages 36:1-36:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.MFCS.2018.36.
  17. Thomas Erlebach and Jakob T. Spooner. Non-strict temporal exploration. In Andrea Werneck Richa and Christian Scheideler, editors, Structural Information and Communication Complexity - 27th International Colloquium, SIROCCO 2020, Paderborn, Germany, June 29 - July 1, 2020, Proceedings, volume 12156 of Lecture Notes in Computer Science, pages 129-145. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-54921-3_8.
  18. Thomas Erlebach and Jakob T. Spooner. Exploration of k-edge-deficient temporal graphs. Acta Informatica, 59(4):387-407, 2022. URL: https://doi.org/10.1007/s00236-022-00421-5.
  19. Thomas Erlebach and Jakob T. Spooner. Parameterized temporal exploration problems. In 1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND), volume 221 of LIPIcs, pages 15:1-15:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.SAND.2022.15.
  20. Thomas Erlebach and Jakob T. Spooner. Parameterized temporal exploration problems. CoRR, abs/2212.01594, 2022. URL: https://doi.org/10.48550/arXiv.2212.01594.
  21. Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. Polynomial kernels for weighted problems. J. Comput. Syst. Sci., 84:1-10, 2017. URL: https://doi.org/10.1016/j.jcss.2016.06.004.
  22. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization. Theory of Parameterized Preprocessing. Cambridge University Press, 2019. Google Scholar
  23. András Frank and Éva Tardos. An application of simultaneous diophantine approximation in combinatorial optimization. Comb., 7(1):49-65, 1987. URL: https://doi.org/10.1007/BF02579200.
  24. Bart M. P. Jansen and Hans L. Bodlaender. Vertex cover kernelization revisited - upper and lower bounds for a refined parameter. Theory of Computing Systems, 53(2):263-299, 2013. URL: https://doi.org/10.1007/s00224-012-9393-4.
  25. Bart M. P. Jansen, Jari J. H. de Kroon, and Michal Wlodarczyk. Vertex deletion parameterized by elimination distance and even less. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 1757-1769. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451068.
  26. David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci., 64(4):820-842, 2002. URL: https://doi.org/10.1006/jcss.2002.1829.
  27. Nina Klobas, George B. Mertzios, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche. Interference-free walks in time: temporally disjoint paths. Auton. Agents Multi Agent Syst., 37(1):1, 2023. URL: https://doi.org/10.1007/s10458-022-09583-5.
  28. Pascal Kunz, Hendrik Molter, and Meirav Zehavi. In which graph structures can we efficiently find temporally disjoint paths and walks? CoRR, abs/2301.10503, 2023. URL: https://doi.org/10.48550/arXiv.2301.10503.
  29. Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet Math., 12(4):239-280, 2016. URL: https://doi.org/10.1080/15427951.2016.1177801.
  30. Othon Michail and Paul G. Spirakis. Traveling salesman problems in temporal graphs. Theor. Comput. Sci., 634:1-23, 2016. URL: https://doi.org/10.1016/j.tcs.2016.04.006.
  31. Polina Rozenshtein and Aristides Gionis. Mining temporal networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD, pages 3225-3226. ACM, 2019. URL: https://doi.org/10.1145/3292500.3332295.
  32. Claude E Shannon. Presentation of a maze-solving machine. Claude Elwood Shannon Collected Papers, pages 681-687, 1993. Google Scholar
  33. Shadi Taghian Alamouti. Exploring temporal cycles and grids. Master’s thesis, Concordia University, 2020. Google Scholar
  34. Johannes Uhlmann and Mathias Weller. Two-layer planarization parameterized by feedback edge set. Theor. Comput. Sci., 494:99-111, 2013. URL: https://doi.org/10.1016/j.tcs.2013.01.029.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail