Drawn Tree Decomposition: New Approach for Graph Drawing Problems

Authors Siddharth Gupta , Guy Sa'ar, Meirav Zehavi

Thumbnail PDF


  • Filesize: 3.26 MB
  • 22 pages

Document Identifiers

Author Details

Siddharth Gupta
  • BITS Pilani, Goa Campus, India
Guy Sa'ar
  • Ben Gurion University of the Negev, Beersheba, Israel
Meirav Zehavi
  • Ben Gurion University of the Negev, Beersheba, Israel

Cite AsGet BibTex

Siddharth Gupta, Guy Sa'ar, and Meirav Zehavi. Drawn Tree Decomposition: New Approach for Graph Drawing Problems. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 23:1-23:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Over the past decade, we witness an increasing amount of interest in the design of exact exponential-time and parameterized algorithms for problems in Graph Drawing. Unfortunately, we still lack knowledge of general methods to develop such algorithms. An even more serious issue is that, here, "standard" parameters very often yield intractability. In particular, for the most common structural parameter, namely, treewidth, we frequently observe NP-hardness already when the input graphs are restricted to have constant (often, being just 1 or 2) treewidth. Our work deals with both drawbacks simultaneously. We introduce a novel form of tree decomposition that, roughly speaking, does not decompose (only) a graph, but an entire drawing. As such, its bags and separators are of geometric (rather than only combinatorial) nature. While the corresponding parameter - like treewidth - can be arbitrarily smaller than the height (and width) of the drawing, we show that - unlike treewidth - it gives rise to efficient algorithms. Specifically, we get slice-wise polynomial (XP) time algorithms parameterized by our parameter. We present a general scheme for the design of such algorithms, and apply it to several central problems in Graph Drawing, including the recognition of grid graphs, minimization of crossings and bends, and compaction. Other than for the class of problems we discussed in the paper, we believe that our decomposition and scheme are of independent interest and can be further extended or generalized to suit even a wider class of problems. Additionally, we discuss classes of drawings where our parameter is bounded by 𝒪(√n) (where n is the number of vertices of the graph), yielding subexponential-time algorithms. Lastly, we prove which relations exist between drawn treewidth and other width measures, including treewidth, pathwidth, (dual) carving-width and embedded-width.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
  • Human-centered computing → Graph drawings
  • Theory of computation → Computational geometry
  • Graph Drawing
  • Parameterized Complexity
  • Tree decomposition


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Hugo A. Akitaya, Maarten Löffler, and Irene Parada. How to fit a tree in a box. Graphs Comb., 38(5):155, 2022. URL: https://doi.org/10.1007/s00373-022-02558-z.
  2. Carlos Alegría, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso, and Maurizio Patrignani. Unit-length rectangular drawings of graphs. In Patrizio Angelini and Reinhard von Hanxleden, editors, Graph Drawing and Network Visualization - 30th International Symposium, GD 2022, Tokyo, Japan, September 13-16, 2022, Revised Selected Papers, volume 13764 of Lecture Notes in Computer Science, pages 127-143. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-22203-0_10.
  3. Noga Alon, Paul D. Seymour, and Robin Thomas. Planar separators. SIAM J. Discret. Math., 7(2):184-193, 1994. URL: https://doi.org/10.1137/S0895480191198768.
  4. Michael J. Bannister, Sergio Cabello, and David Eppstein. Parameterized complexity of 1-planarity. Journal of Graph Algorithms and Applications, 22(1):23-49, 2018. Google Scholar
  5. Michael J. Bannister and David Eppstein. Crossing minimization for 1-page and 2-page drawings of graphs with bounded treewidth. Journal of Graph Algorithms and Applications, 22(4):577-606, 2018. Google Scholar
  6. Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spirality and optimal orthogonal drawings. SIAM J. Comput., 27(6):1764-1811, 1998. URL: https://doi.org/10.1137/S0097539794262847.
  7. Sandeep N. Bhatt and Stavros S. Cosmadakis. The complexity of minimizing wire lengths in VLSI layouts. Inf. Process. Lett., 25(4):263-267, 1987. URL: https://doi.org/10.1016/0020-0190(87)90173-6.
  8. Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized algorithms for book embedding problems. Journal of Graph Algorithms and Applications, 24(4):603-620, 2020. Google Scholar
  9. Therese Biedl. On area-optimal planar graph drawings. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages 198-210. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-43948-7_17.
  10. Therese Biedl and Debajyoti Mondal. On upward drawings of trees on a given grid. In Fabrizio Frati and Kwan-Liu Ma, editors, Proc. 25th International Symposium on Graph Drawing and Network Visualization (GD), volume 10692 of LNCS, pages 318-325. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-73915-1_25.
  11. Therese Biedl and Martin Vatshelle. The point-set embeddability problem for plane graphs. Int. J. Comput. Geom. Appl., 23(4-5):357-396, 2013. URL: https://doi.org/10.1142/S0218195913600091.
  12. Daniel Bienstock. Some provably hard crossing number problems. Discrete & Computational Geometry, 6(3):443-459, 1991. Google Scholar
  13. Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci., 209(1-2):1-45, 1998. URL: https://doi.org/10.1016/S0304-3975(97)00228-4.
  14. Stina S Bridgeman, Giuseppe Di Battista, Walter Didimo, Giuseppe Liotta, Roberto Tamassia, and Luca Vismara. Turn-regularity and optimal area drawings of orthogonal representations. Computational Geometry, 16(1):53-93, 2000. Google Scholar
  15. Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM Journal on Computing, 42(5):1803-1829, 2013. Google Scholar
  16. Hubert Chan. A parameterized algorithm for upward planarity testing. In European Symposium on Algorithms, ESA, pages 157-168. Springer, 2004. Google Scholar
  17. Yi-Jun Chang and Hsu-Chun Yen. On bend-minimized orthogonal drawings of planar 3-graphs. In Boris Aronov and Matthew J. Katz, editors, 33rd International Symposium on Computational Geometry, SoCG 2017, July 4-7, 2017, Brisbane, Australia, volume 77 of LIPIcs, pages 29:1-29:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.SoCG.2017.29.
  18. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. Google Scholar
  19. Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta. Subexponential-time and FPT algorithms for embedded flat clustered planarity. In Graph-Theoretic Concepts in Computer Science - 44th International Workshop, WG 2018, Cottbus, Germany, June 27-29, 2018, Proceedings, pages 111-124, 2018. URL: https://doi.org/10.1007/978-3-030-00256-5_10.
  20. Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta. C-planarity testing of embedded clustered graphs with bounded dual carving-width. Algorithmica, 83(8):2471-2502, 2021. URL: https://doi.org/10.1007/s00453-021-00839-2.
  21. Peter Damaschke. Enumerating grid layouts of graphs. J. Graph Algorithms Appl., 24(3):433-460, 2020. Google Scholar
  22. Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Orthogonal planarity testing of bounded treewidth graphs. Journal of Computer and System Sciences, 125:129-148, 2022. URL: https://doi.org/10.1016/j.jcss.2021.11.004.
  23. Walter Didimo, Siddharth Gupta, Philipp Kindermann, Giuseppe Liotta, Alexander Wolff, and Meirav Zehavi. Parameterized approaches to orthogonal compaction. In Leszek Gasieniec, editor, SOFSEM 2023: Theory and Practice of Computer Science - 48th International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2023, Nový Smokovec, Slovakia, January 15-18, 2023, Proceedings, volume 13878 of Lecture Notes in Computer Science, pages 111-125. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-23101-8_8.
  24. Walter Didimo and Giuseppe Liotta. Computing orthogonal drawings in a variable embedding setting. In Proceedings of the 9th International Symposium on Algorithms and Computation, ISAAC, pages 80-89. Springer, 1998. Google Scholar
  25. Walter Didimo, Giuseppe Liotta, and Maurizio Patrignani. Bend-minimum orthogonal drawings in quadratic time. In Therese Biedl and Andreas Kerren, editors, Graph Drawing and Network Visualization - 26th International Symposium, GD 2018, Barcelona, Spain, September 26-28, 2018, Proceedings, volume 11282 of Lecture Notes in Computer Science, pages 481-494. Springer, 2018. URL: https://doi.org/10.1007/978-3-030-04414-5_34.
  26. William S. Evans, Krzysztof Fleszar, Philipp Kindermann, Noushin Saeedi, Chan-Su Shin, and Alexander Wolff. Minimum rectilinear polygons for given angle sequences. Comput. Geom., 100:101820, 2022. URL: https://doi.org/10.1016/j.comgeo.2021.101820.
  27. Mike Fellows, Panos Giannopoulos, Christian Knauer, Christophe Paul, Frances A. Rosamond, Sue Whitesides, and Nathan Yu. Milling a graph with turn costs: A parameterized complexity perspective. In Proceedings of the 36th International Workshop on Graph Theoretic Concepts in Computer Science, WG, pages 123-134, 2010. Google Scholar
  28. Robert Ganian, Fabrizio Montecchiani, Martin Nöllenburg, and Meirav Zehavi. Parameterized complexity in graph drawing (dagstuhl seminar 21293). Dagstuhl Reports, 11(6):82-123, 2021. Google Scholar
  29. Michael R Garey and David S Johnson. Crossing number is np-complete. SIAM Journal on Algebraic Discrete Methods, 4(3):312-316, 1983. Google Scholar
  30. Ashim Garg and Roberto Tamassia. On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput., 31(2):601-625, 2001. URL: https://doi.org/10.1137/S0097539794277123.
  31. Angelo Gregori. Unit-length embedding of binary trees on a square grid. Information Processing Letters, 31(4):167-173, 1989. Google Scholar
  32. Martin Grohe. Computing crossing numbers in quadratic time. Journal of Computer and System Sciences, 68(2):285-302, 2004. Google Scholar
  33. Siddharth Gupta, Guy Sa'ar, and Meirav Zehavi. Drawn tree decomposition: New approach for graph drawing problems, 2023. URL: https://arxiv.org/abs/2310.05471.
  34. Siddharth Gupta, Guy Sa'ar, and Meirav Zehavi. Grid recognition: Classical and parameterized computational perspectives. Journal of Computer and System Sciences, 136:17-62, 2023. URL: https://doi.org/10.1016/j.jcss.2023.02.008.
  35. Patrick Healy and Karol Lynch. Two fixed-parameter tractable algorithms for testing upward planarity. International Journal of Foundations of Computer Science, 17(05):1095-1114, 2006. Google Scholar
  36. Petr Hliněný. Crossing number is hard for cubic graphs. Journal of Combinatorial Theory, Series B, 96(4):455-471, 2006. Google Scholar
  37. Petr Hliněný and Abhisekh Sankaran. Exact crossing number parameterized by vertex cover. In Proceedings of the 27th International Symposium on Graph Drawing and Network Visualization, GD, pages 307-319, 2019. Google Scholar
  38. Ken-ichi Kawarabayashi and Buce Reed. Computing crossing number in linear time. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, STOC, pages 382-390, 2007. Google Scholar
  39. Marcus Krug and Dorothea Wagner. Minimizing the area for planar straight-line grid drawings. In Seok-Hee Hong, Takao Nishizeki, and Wu Quan, editors, Graph Drawing, 15th International Symposium, GD 2007, Sydney, Australia, September 24-26, 2007. Revised Papers, volume 4875 of Lecture Notes in Computer Science, pages 207-212. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-77537-9_21.
  40. Giuseppe Liotta, Ignaz Rutter, and Alessandra Tappini. Parameterized complexity of graph planarity with restricted cyclic orders. J. Comput. Syst. Sci., 135:125-144, 2023. URL: https://doi.org/10.1016/j.jcss.2023.02.007.
  41. Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied Mathematics, 36(2):177-189, 1979. Google Scholar
  42. Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci., 32(3):265-279, 1986. URL: https://doi.org/10.1016/0022-0000(86)90030-9.
  43. Maurizio Patrignani. On the complexity of orthogonal compaction. Computational Geometry, 19(1):47-67, 2001. Google Scholar
  44. Michael J. Pelsmajer, Marcus Schaefer, and Daniel Stefankovic. Crossing numbers of graphs with rotation systems. Algorithmica, 60(3):679-702, 2011. Google Scholar
  45. Md. Saidur Rahman, Noritsugu Egi, and Takao Nishizeki. No-bend orthogonal drawings of subdivisions of planar triconnected cubic graphs. IEICE Trans. Inf. Syst., 88-D(1):23-30, 2005. URL: http://search.ieice.org/bin/summary.php?id=e88-d_1_23&category=D&year=2005&lang=E&abst=.
  46. Marcus Schaefer. Complexity of some geometric and topological problems. In Proceedings of the 18th International Symposium on Graph Drawing and Network Visualization, GD, pages 334-344. Springer, 2009. Google Scholar
  47. Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421-444, 1987. URL: https://doi.org/10.1137/0216030.
  48. Meirav Zehavi. Parameterized analysis and crossing minimization problems. Computer Science Review, 45:100490, 2022. URL: https://doi.org/10.1016/j.cosrev.2022.100490.
  49. Xiao Zhou and Takao Nishizeki. Orthogonal drawings of series-parallel graphs with minimum bends. SIAM J. Discret. Math., 22(4):1570-1604, 2008. URL: https://doi.org/10.1137/060667621.