Dynamic Programming on Bipartite Tree Decompositions

Authors Lars Jaffke, Laure Morelle, Ignasi Sau, Dimitrios M. Thilikos

Thumbnail PDF


  • Filesize: 0.94 MB
  • 22 pages

Document Identifiers

Author Details

Lars Jaffke
  • Department of Informatics, University of Bergen, Norway
Laure Morelle
  • LIRMM, Université de Montpellier, CNRS, France
Ignasi Sau
  • LIRMM, Université de Montpellier, CNRS, France
Dimitrios M. Thilikos
  • LIRMM, Université de Montpellier, CNRS, France


We thank Sebastian Wiederrecht and the reviewers for helpful remarks.

Cite AsGet BibTex

Lars Jaffke, Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic Programming on Bipartite Tree Decompositions. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 26:1-26:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


We revisit a graph width parameter that we dub bipartite treewidth, along with its associated graph decomposition that we call bipartite tree decomposition. Bipartite treewidth can be seen as a common generalization of treewidth and the odd cycle transversal number. Intuitively, a bipartite tree decomposition is a tree decomposition whose bags induce almost bipartite graphs and whose adhesions contain at most one vertex from the bipartite part of any other bag, while the width of such decomposition measures how far the bags are from being bipartite. Adapted from a tree decomposition originally defined by Demaine, Hajiaghayi, and Kawarabayashi [SODA 2010] and explicitly defined by Tazari [Theor. Comput. Sci. 2012], bipartite treewidth appears to play a crucial role for solving problems related to odd-minors, which have recently attracted considerable attention. As a first step toward a theory for solving these problems efficiently, the main goal of this paper is to develop dynamic programming techniques to solve problems on graphs of small bipartite treewidth. For such graphs, we provide a number of para-NP-completeness results, FPT-algorithms, and XP-algorithms, as well as several open problems. In particular, we show that K_t-Subgraph-Cover, Weighted Vertex Cover/Independent Set, Odd Cycle Transversal, and Maximum Weighted Cut are FPT parameterized by bipartite treewidth. We also provide the following complexity dichotomy when H is a 2-connected graph, for each of the H-Subgraph-Packing, H-Induced-Packing, H-Scattered-Packing, and H-Odd-Minor-Packing problems: if H is bipartite, then the problem is para-NP-complete parameterized by bipartite treewidth while, if H is non-bipartite, then the problem is solvable in XP-time. Beyond bipartite treewidth, we define 1-ℋ-treewidth by replacing the bipartite graph class by any graph class ℋ. Most of the technology developed here also works for this more general parameter.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
  • tree decomposition
  • bipartite graphs
  • dynamic programming
  • odd-minors
  • packing
  • maximum cut
  • vertex cover
  • independent set
  • odd cycle transversal


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Akanksha Agrawal, Lawqueen Kanesh, Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Deleting, eliminating and decomposing to hereditary classes are all fpt-equivalent. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 1976-2004. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.79.
  2. Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary. In Proc. of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 951-970, 2020. URL: https://doi.org/10.1137/1.9781611975994.57.
  3. Kathie Cameron. Induced matchings. Discrete Applied Mathematics, 24(1-3):97-102, 1989. URL: https://doi.org/10.1016/0166-218X(92)90275-F.
  4. Rutger Campbell, J. Pascal Gollin, Kevin Hendrey, and Sebastian Wiederrecht. Odd-Minors II: Bipartite treewidth. Manuscript under preparation (private communication), 2023. Google Scholar
  5. Julia Chuzhoy and Zihan Tan. Towards tight(er) bounds for the Excluded Grid Theorem. Journal of Combinatorial Theory, Series B, 146:219-265, 2021. URL: https://doi.org/10.1016/j.jctb.2020.09.010.
  6. Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Decomposition, approximation, and coloring of odd-minor-free graphs. In Proc. of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 329-344. SIAM, 2010. URL: https://doi.org/10.1137/1.9781611973075.28.
  7. Reinhard Diestel. Graph Theory, volume 173. Springer-Verlag, 5th edition, 2017. URL: https://doi.org/10.1007/978-3-662-53622-3.
  8. Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon. Measuring what matters: A hybrid approach to dynamic programming with treewidth. Journal of Computer and System Sciences, 121:57-75, 2021. URL: https://doi.org/10.1016/j.jcss.2021.04.005.
  9. Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Explicit linear kernels via dynamic programming. SIAM Journal on Discrete Mathematics, 29(4):1864-1894, 2015. URL: https://doi.org/10.1137/140968975.
  10. Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Explicit linear kernels for packing problems. Algorithmica, 81(4):1615-1656, 2019. URL: https://doi.org/10.1007/s00453-018-0495-5.
  11. Jim Geelen, Bert Gerards, Bruce A. Reed, Paul D. Seymour, and Adrian Vetta. On the odd-minor variant of Hadwiger’s conjecture. Journal of Combinatorial Theory, Series B, 99(1):20-29, 2009. URL: https://doi.org/10.1016/j.jctb.2008.03.006.
  12. J. Pascal Gollin and Sebastian Wiederrecht. Odd-Minors I: Excluding small parity breaks. CoRR, abs/2304.04504, 2023. URL: https://arxiv.org/abs/2304.04504.
  13. Martin Grötschel and William R. Pulleyblank. Weakly bipartite graphs and the max-cut problem. Operations Research Letters, 1(1):23-27, 1981. URL: https://doi.org/10.1016/0167-6377(81)90020-1.
  14. Bertrand Guenin. A characterization of weakly bipartite graphs. Journal of Combinatorial Theory, Series B, 83(1):112-168, 2001. URL: https://doi.org/10.1006/jctb.2001.2051.
  15. Hugo Hadwiger. Über eine klassifikation der streckenkomplexe. Vierteljschr. Naturforsch. Ges. Zürich, 88(2):133-142, 1943. URL: https://www.ngzh.ch/archiv/1943_88/88_2/88_17.pdf.
  16. Huynh, Tony. The Linkage Problem for Group-labelled Graphs. PhD thesis, University of Waterloo, 2009. URL: http://hdl.handle.net/10012/4716.
  17. Lars Jaffke, Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic programming on bipartite tree decompositions. CoRR, abs/2309.07754, 2023. URL: https://doi.org/10.48550/arXiv.2309.07754.
  18. Bart M. P. Jansen and Jari J. H. de Kroon. FPT algorithms to compute the elimination distance to bipartite graphs and more. In Proc. of the 47th International Workshop on Graph-Theoretic Concepts in Computer Science (WG), volume 12911 of LNCS, pages 80-93, 2021. URL: https://doi.org/10.1007/978-3-030-86838-3_6.
  19. Tommy R Jensen and Bjarne Toft. Graph coloring problems. Wiley, 2011. URL: https://doi.org/10.1002/9781118032497.
  20. Richard M. Karp. Reducibility among combinatorial problems. In 50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art, pages 219-241. Springer, 2010. URL: https://doi.org/10.1007/978-3-540-68279-0_8.
  21. Ken-ichi Kawarabayashi and Bruce A. Reed. An (almost) linear time algorithm for odd cyles transversal. In Proc. of the21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 365-378. SIAM, 2010. URL: https://doi.org/10.1137/1.9781611973075.31.
  22. Ken-ichi Kawarabayashi, Bruce A. Reed, and Paul Wollan. The graph minor algorithm with parity conditions. In Proc. of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 27-36. IEEE Computer Society, 2011. URL: https://doi.org/10.1109/FOCS.2011.52.
  23. Valerie King, S. Rao, and Robert Endre Tarjan. A faster deterministic maximum flow algorithm. Journal of Algorithms, 17(3):447-474, 1994. URL: https://doi.org/10.1006/jagm.1994.1044.
  24. David G. Kirkpatrick and Pavol Hell. On the complexity of general graph factor problems. SIAM Journal on Computing, 12(3):601-609, 1983. URL: https://doi.org/10.1137/0212040.
  25. Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions on Algorithms, 11(2):15:1-15:31, 2014. URL: https://doi.org/10.1145/2566616.
  26. Jérôme Monnot and Sophie Toulouse. The path partition problem and related problems in bipartite graphs. Operations Research Letter, 35(5):677-684, 2007. URL: https://doi.org/10.1016/j.orl.2006.12.004.
  27. James B. Orlin. Max flows in O(nm) time, or better. In Proc. of the 45th annual ACM Symposium on Theory of Computing Conference (STOC), pages 765-774. ACM, 2013. URL: https://doi.org/10.1145/2488608.2488705.
  28. Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Operations Research Letters, 32(4):299-301, 2004. URL: https://doi.org/10.1016/j.orl.2003.10.009.
  29. Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar graph. Journal of Combinatorial Theory, Series B, 62(2):323-348, 1994. URL: https://doi.org/10.1006/jctb.1994.1073.
  30. Raphael Steiner. Improved bound for improper colourings of graphs with no odd clique minor. Combinatorics, Probability and Computing, 32(2):326-333, 2023. URL: https://doi.org/10.1017/S0963548322000268.
  31. Siamak Tazari. Faster approximation schemes and parameterized algorithms on (odd-)h-minor-free graphs. Theoretical Computer Science, 417:95-107, 2012. URL: https://doi.org/10.1016/j.tcs.2011.09.014.
  32. Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on Computing, 10(2):310-327, 1981. URL: https://doi.org/10.1137/0210022.
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail