All-Pairs Shortest Paths in Unit-Disk Graphs in Slightly Subquadratic Time

Authors Timothy M. Chan, Dimitrios Skrepetos



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2016.24.pdf
  • Filesize: 485 kB
  • 13 pages

Document Identifiers

Author Details

Timothy M. Chan
Dimitrios Skrepetos

Cite As Get BibTex

Timothy M. Chan and Dimitrios Skrepetos. All-Pairs Shortest Paths in Unit-Disk Graphs in Slightly Subquadratic Time. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 24:1-24:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016) https://doi.org/10.4230/LIPIcs.ISAAC.2016.24

Abstract

In this paper we study the all-pairs shortest paths problem in (unweighted) unit-disk graphs. The previous best solution for this problem required O(n^2 log n) time, by running the O(n log n)-time single-source shortest path algorithm of Cabello and Jejcic [Comput. Geom., 2015] from every source vertex,where n is the number of vertices. We not only manage to eliminate the logarithmic factor, but also obtain the first (slightly) subquadratic algorithm for the problem, running in O(n^2 sqrt{ frac{log log n}{log n} }) time. Our algorithm computes an implicit representation of all the shortest paths, and, in the same amount of time, can also compute the diameter of the graph.

Subject Classification

Keywords
  • unit-disk graphs
  • all-pairs shortest paths
  • computational geometry

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing the discrete Fréchet distance in subquadratic time. SIAM Journal on Computing, 43:429-449, 2014. Google Scholar
  2. Kevin Buchin and Wolfgang Mulzer. Delaunay triangulations in O(sort(n)) time and more. Journal of the ACM (JACM), 58(2):6, 2011. Google Scholar
  3. Sergio Cabello and Miha Jejčič. Shortest paths in intersection graphs of unit disks. Computational Geometry, 48:360-367, 2015. Google Scholar
  4. Timothy M. Chan. All-pairs shortest paths with real weights in O(n³/logn) time. Algorithmica, 50(2):236-243, 2008. Google Scholar
  5. Timothy M. Chan. More algorithms for all-pairs shortest paths in weighted graphs. SIAM Journal on Computing, 39(5):2075-2089, 2010. Google Scholar
  6. Timothy M. Chan. All-pairs shortest paths for unweighted undirected graphs in o(mn) time. ACM Transactions on Algorithms, 8:1-17, 2012. Google Scholar
  7. Timothy M. Chan. Klee’s measure problem made easy. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 410-419, 2013. Google Scholar
  8. Timothy M. Chan. Speeding up the Four Russians algorithm by about one more logarithmic factor. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 212-217, 2015. URL: http://dx.doi.org/10.1137/1.9781611973730.16.
  9. Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combinatorics. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC), pages 31-40, 2015. Google Scholar
  10. Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more: Quickly derandomizing Razborov-Smolensky. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1246-1255, 2016. Google Scholar
  11. Swarat Chaudhuri. Subcubic algorithms for recursive state machines. ACM SIGPLAN Notices, 43(1):159-169, 2008. Google Scholar
  12. Bernard Chazelle and Wolfgang Mulzer. Computing hereditary convex structures. Discrete &Computational Geometry, 45(4):796-823, 2011. Google Scholar
  13. Wlodzimierz Dobosiewicz. A more efficient algorithm for the min-plus multiplication. International Journal of Computer Mathematics, 32(1-2):49-60, 1990. Google Scholar
  14. Esther Ezra and Wolfgang Mulzer. Convex hull of points lying on lines in o(nlogn) time after preprocessing. Computational Geometry, 46(4):417-434, 2013. Google Scholar
  15. Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications. SIAM Journal on Computing, 16:1004-1022, 1987. Google Scholar
  16. Michael L. Fredman. New bounds on the complexity of the shortest path problem. SIAM Journal on Computing, 5:83-89, 1976. Google Scholar
  17. Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest path problem. Journal of Computer and System Sciences, 54(2):255-262, 1997. Google Scholar
  18. Zvi Galil and Oded Margalit. All pairs shortest distances for graphs with small integer length edges. Information and Computation, 134(2):103-139, 1997. Google Scholar
  19. Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk graph metric and its applications. SIAM Journal on Computing, 35(1):151-169, 2005. Google Scholar
  20. Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. In Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 621-630, 2014. Google Scholar
  21. Yijie Han. Improved algorithm for all pairs shortest paths. Information Processing Letters, 91(5):245-250, 2004. Google Scholar
  22. Yijie Han. An O(n³(loglogn/logn)^5/4) time algorithm for all pairs shortest path. Algorithmica, 51(4):428-434, 2008. Google Scholar
  23. Yijie Han and Tadao Takaoka. An O(n³loglogn/log²n) time algorithm for all pairs shortest paths. In Proceedings of the 13th Scandinavian Symposium on Algorithm Theory (SWAT), pages 131-141, 2012. Google Scholar
  24. Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing problems in image processing and VLSI. Journal of the ACM, 32(1):130-136, 1985. Google Scholar
  25. Alon Efrat, Alon Itai, and Matthew J. Katz. Geometry helps in bottleneck matching and related problems. Algorithmica, 31(1):1-28, 2001. Google Scholar
  26. Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four Soviets walk the dog - with an application to Alt’s conjecture. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1399-1413, 2014. Google Scholar
  27. Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. Journal of Computer and System Sciences, 23:166-204, 1981. Google Scholar
  28. Franco P. Preparata and M. Ian Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985. Google Scholar
  29. Liam Roditty and Michael Segal. On bounded leg shortest paths problems. Algorithmica, 59(4):583-600, 2011. Google Scholar
  30. Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of Computer and System Sciences, 51(3):400-403, 1995. Google Scholar
  31. Avi Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs with integer weights. In Proceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS), pages 605-614, 1999. Google Scholar
  32. Tadao Takaoka. A new upper bound on the complexity of the all pairs shortest path problem. Information Processing Letters, 43(4):195-199, 1992. URL: http://dx.doi.org/10.1016/0020-0190(92)90200-F.
  33. Tadao Takaoka. Subcubic cost algorithms for the all pairs shortest path problem. Algorithmica, 20(3):309-318, 1998. Google Scholar
  34. Tadao Takaoka. A faster algorithm for the all-pairs shortest path problem and its application. In Proceedings of the 10th Annual International Conference on Computing and Combinatorics (COCOON), pages 278-289, 2004. Google Scholar
  35. Tadao Takaoka. An O(n³loglogn/logn) time algorithm for the all-pairs shortest path problem. Information Processing Letters, 96(5):155-161, 2005. Google Scholar
  36. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC), pages 664-673, 2014. Google Scholar
  37. Christian Wulff-Nilsen. Constant time distance queries in planar unweighted graphs with subquadratic preprocessing time. Computational Geometry, 46(7):831-838, 2013. Google Scholar
  38. Huacheng Yu. An improved combinatorial algorithm for Boolean matrix multiplication. In Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming (ICALP), Part I, pages 1094-1105, 2015. URL: http://dx.doi.org/10.1007/978-3-662-47672-7_89.
  39. Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication. Journal of the ACM, 49(3):289-317, 2002. Google Scholar
  40. Uri Zwick. A slightly improved sub-cubic algorithm for the all pairsshortest paths problem with real edge lengths. Algorithmica, 46(2):181-192, 2006. URL: http://dx.doi.org/10.1007/s00453-005-1199-1.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail