Geometric Pattern Matching Reduces to k-SUM

Authors Boris Aronov , Jean Cardinal



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2020.32.pdf
  • Filesize: 465 kB
  • 9 pages

Document Identifiers

Author Details

Boris Aronov
  • Department of Computer Science and Engineering, Tandon School of Engineering, New York University, Brooklyn, NY ,USA
Jean Cardinal
  • Université libre de Bruxelles (ULB), Belgium

Cite AsGet BibTex

Boris Aronov and Jean Cardinal. Geometric Pattern Matching Reduces to k-SUM. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 32:1-32:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.ISAAC.2020.32

Abstract

We prove that some exact geometric pattern matching problems reduce in linear time to o k-SUM when the pattern has a fixed size k. This holds in the real RAM model for searching for a similar copy of a set of k ≥ 3 points within a set of n points in the plane, and for searching for an affine image of a set of k ≥ d+2 points within a set of n points in d-space. As corollaries, we obtain improved real RAM algorithms and decision trees for the two problems. In particular, they can be solved by algebraic decision trees of near-linear height.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
  • Theory of computation → Computational geometry
Keywords
  • Geometric pattern matching
  • k-SUM problem
  • Linear decision trees

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and basing hardness on an extremely popular conjecture. SIAM J. Comput., 47(3):1098-1122, 2018. URL: https://doi.org/10.1137/15M1050987.
  2. Bernardo M. Ábrego, György Elekes, and Silvia Fernández-Merchant. Structural results for planar sets with many similar subsets. Combinatorica, 24(4):541-554, 2004. URL: https://doi.org/10.1007/s00493-004-0033-8.
  3. Bernardo M. Ábrego and Silvia Fernández-Merchant. On the maximum number of equilateral triangles, I. Discrete & Computational Geometry, 23(1):129-135, 2000. URL: https://doi.org/10.1007/PL00009486.
  4. Bernardo M. Ábrego, Silvia Fernández-Merchant, Daniel J. Katz, and Levon Kolesnikov. On the number of similar instances of a pattern in a finite set. Electr. J. Comb., 23(4):P4.39, 2016. URL: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i4p39.
  5. Pankaj Agarwal and Micha Sharir. The number of congruent simplices in a point set. Discrete & Computational Geometry, 28(2):123-150, 2002. URL: https://doi.org/10.1007/s00454-002-0727-x.
  6. Dror Aiger and Klara Kedem. Geometric pattern matching for point sets in the plane under similarity transformations. Inf. Process. Lett., 109(16):935-940, 2009. URL: https://doi.org/10.1016/j.ipl.2009.04.021.
  7. Nir Ailon and Bernard Chazelle. Lower bounds for linear degeneracy testing. J. ACM, 52(2):157-171, 2005. URL: https://doi.org/10.1145/1059513.1059515.
  8. Boris Aronov, Esther Ezra, and Micha Sharir. Testing polynomials for vanishing on cartesian products of planar point sets. In Sergio Cabello and Danny Z. Chen, editors, 36th International Symposium on Computational Geometry, SoCG 2020, June 23-26, 2020, Zürich, Switzerland, volume 164 of LIPIcs, pages 8:1-8:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.SoCG.2020.8.
  9. Boris Aronov, Esther Ezra, and Micha Sharir. Testing polynomials for vanishing on cartesian products of planar point sets, 2020. arXiv:2003.09533. Google Scholar
  10. Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien Ooms, and Noam Solomon. Subquadratic algorithms for algebraic 3SUM. Discrete & Computational Geometry, 61(4):698-734, 2019. URL: https://doi.org/10.1007/s00454-018-0040-y.
  11. Peter Braß. Combinatorial geometry problems in pattern recognition. Discrete & Computational Geometry, 28(4):495-510, 2002. URL: https://doi.org/10.1007/s00454-002-2884-3.
  12. Peter Braßand János Pach. Problems and results on geometric patterns. In David Avis, Alain Hertz, and Odile Marcotte, editors, Graph Theory and Combinatorial Optimization, pages 17-36. Springer US, Boston, MA, 2005. URL: https://doi.org/10.1007/0-387-25592-3_2.
  13. Jean Cardinal, John Iacono, and Aurélien Ooms. Solving k-SUM using few linear queries. In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 25:1-25:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.ESA.2016.25.
  14. Timothy M. Chan. More logarithmic-factor speedups for 3SUM, (median, +)-convolution, and some geometric 3SUM-hard problems. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 881-897, 2018. URL: https://doi.org/10.1137/1.9781611975031.57.
  15. L. Paul Chew, Michael T. Goodrich, Daniel P. Huttenlocher, Klara Kedem, Jon M. Kleinberg, and Dina Kravets. Geometric pattern matching under euclidean motion. Comput. Geom., 7:113-124, 1997. URL: https://doi.org/10.1016/0925-7721(95)00047-X.
  16. Luc Devroye. Non-Uniform Random Variate Generation. Springer, 1986. URL: http://www.nrbook.com/devroye/.
  17. Bartłomiej Dudek, Paweł Gawrychowski, and Tatiana Starikovskaya. All non-trivial variants of 3-LDT are equivalent. In Proceedings of the 52nd Annual ACM Symposium on Theory of Computing STOC, June 22–26, 2020, Chicago (IL), 2020. Google Scholar
  18. György Elekes and Paul Erdős. Similar Configurations and Pseudogrids, pages 85-104. Colloquia Mathematica Societatis János Bolyai, North Holland, Amsterdam, 1994. Google Scholar
  19. Esther Ezra and Micha Sharir. A nearly quadratic bound for point-location in hyperplane arrangements, in the linear decision tree model. Discrete & Computational Geometry, 61(4):735-755, 2019. URL: https://doi.org/10.1007/s00454-018-0043-8.
  20. Ari Freund. Improved subquadratic 3SUM. Algorithmica, 77(2):440-458, 2017. URL: https://doi.org/10.1007/s00453-015-0079-6.
  21. Martin Gavrilov, Piotr Indyk, Rajeev Motwani, and Suresh Venkatasubramanian. Combinatorial and experimental methods for approximate point pattern matching. Algorithmica, 38(1):59-90, 2004. URL: https://doi.org/10.1007/s00453-003-1043-4.
  22. Omer Gold and Micha Sharir. Improved bounds for 3SUM, k-SUM, and linear degeneracy. In 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, pages 42:1-42:13, 2017. URL: https://doi.org/10.4230/LIPIcs.ESA.2017.42.
  23. Jacob E. Goodman, Joseph O'Rourke, and Csaba D. Tóth, editors. Handbook of Discrete and Computational Geometry, Third Edition. CRC Press LLC, 2017. Google Scholar
  24. Michael T. Goodrich, Joseph S. B. Mitchell, and Mark W. Orletsky. Approximate geometric pattern matching under rigid motions. IEEE Trans. Pattern Anal. Mach. Intell., 21(4):371-379, 1999. URL: https://doi.org/10.1109/34.761267.
  25. Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. J. ACM, 65(4):22:1-22:25, 2018. URL: https://doi.org/10.1145/3185378.
  26. Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-optimal linear decision trees for k-SUM and related problems. J. ACM, 66(3):16:1-16:18, 2019. URL: https://doi.org/10.1145/3285953.
  27. Miklós Laczkovich and Imre Z. Ruzsa. The number of homothetic subsets. In Ronald L. Graham and Jaroslav Nešetřil, editors, The Mathematics of Paul Erdős II, pages 294-302. Springer Berlin Heidelberg, 1997. URL: https://doi.org/10.1007/978-3-642-60406-5_26.
  28. Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In Proceedings of the ICM, 2018. Google Scholar