A directed graph G = (V,E) is twinless strongly connected if it contains a strongly connected spanning subgraph without any pair of antiparallel (or twin) edges. The twinless strongly connected components (TSCCs) of a directed graph G are its maximal twinless strongly connected subgraphs. These concepts have several diverse applications, such as the design of telecommunication networks and the structural stability of buildings. A vertex v ∈ V is a twinless strong articulation point of G, if the deletion of v increases the number of TSCCs of G. Here, we present the first linear-time algorithm that finds all the twinless strong articulation points of a directed graph. We show that the computation of twinless strong articulation points reduces to the following problem in undirected graphs, which may be of independent interest: Given a 2-vertex-connected undirected graph H, find all vertices v for which there exists an edge e such that H⧵{v,e} is not connected. We develop a linear-time algorithm that not only finds all such vertices v, but also computes the number of edges e such that H⧵{v,e} is not connected. This also implies that for each twinless strong articulation point v which is not a strong articulation point in a strongly connected digraph G, we can compute the number of TSCCs in G⧵v.
@InProceedings{georgiadis_et_al:LIPIcs.ISAAC.2020.38, author = {Georgiadis, Loukas and Kosinas, Evangelos}, title = {{Linear-Time Algorithms for Computing Twinless Strong Articulation Points and Related Problems}}, booktitle = {31st International Symposium on Algorithms and Computation (ISAAC 2020)}, pages = {38:1--38:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-173-3}, ISSN = {1868-8969}, year = {2020}, volume = {181}, editor = {Cao, Yixin and Cheng, Siu-Wing and Li, Minming}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.38}, URN = {urn:nbn:de:0030-drops-133820}, doi = {10.4230/LIPIcs.ISAAC.2020.38}, annote = {Keywords: 2-connectivity, cut pairs, strongly connected components} }
Feedback for Dagstuhl Publishing