Document

Sparse Hop Spanners for Unit Disk Graphs

File

LIPIcs.ISAAC.2020.57.pdf
• Filesize: 0.7 MB
• 17 pages

Cite As

Adrian Dumitrescu, Anirban Ghosh, and Csaba D. Tóth. Sparse Hop Spanners for Unit Disk Graphs. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 57:1-57:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.ISAAC.2020.57

Abstract

A unit disk graph G on a given set of points P in the plane is a geometric graph where an edge exists between two points p,q ∈ P if and only if |pq| ≤ 1. A subgraph G' of G is a k-hop spanner if and only if for every edge pq ∈ G, the topological shortest path between p,q in G' has at most k edges. We obtain the following results for unit disk graphs. 1) Every n-vertex unit disk graph has a 5-hop spanner with at most 5.5n edges. We analyze the family of spanners constructed by Biniaz (2020) and improve the upper bound on the number of edges from 9n to 5.5n. 2) Using a new construction, we show that every n-vertex unit disk graph has a 3-hop spanner with at most 11n edges. 3) Every n-vertex unit disk graph has a 2-hop spanner with O(nlog n) edges. This is the first nontrivial construction of 2-hop spanners. 4) For every sufficiently large n, there exists a set P of n points on a circle, such that every plane hop spanner on P has hop stretch factor at least 4. Previously, no lower bound greater than 2 was known. 5) For every point set on a circle, there exists a plane 4-hop spanner. As such, this provides a tight bound for points on a circle. 6) The maximum degree of k-hop spanners cannot be bounded from above by a function of k.

Subject Classification

ACM Subject Classification
• Theory of computation → Design and analysis of algorithms
Keywords
• graph approximation
• ε-net
• hop-spanner
• unit disk graph
• lower bound

Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

References

1. Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse spanners of weighted graphs. Discret. Comput. Geom., 9:81-100, 1993. URL: https://doi.org/10.1007/BF02189308.
2. Khaled M. Alzoubi, Xiang-Yang Li, Yu Wang, Peng-Jun Wan, and Ophir Frieder. Geometric spanners for wireless ad hoc networks. IEEE Trans. Parallel Distrib. Syst., 14(4):408-421, 2003. URL: https://doi.org/10.1109/TPDS.2003.1195412.
3. Boris Aronov, Mark de Berg, Otfried Cheong, Joachim Gudmundsson, Herman J. Haverkort, Michiel H. M. Smid, and Antoine Vigneron. Sparse geometric graphs with small dilation. Comput. Geom., 40(3):207-219, 2008. URL: https://doi.org/10.1016/j.comgeo.2007.07.004.
4. Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs. Random Struct. Algorithms, 30(4):532-563, 2007. URL: https://doi.org/10.1002/rsa.20130.
5. Surender Baswana and Sandeep Sen. Simple Algorithms for Spanners in Weighted Graphs, pages 1981-1986. Springer, New York, 2016. URL: https://doi.org/10.1007/978-1-4939-2864-4_10.
6. Ahmad Biniaz. Plane hop spanners for unit disk graphs: Simpler and better. Comput. Geom., 89:101622, 2020. URL: https://doi.org/10.1016/j.comgeo.2020.101622.
7. Prosenjit Bose, Joachim Gudmundsson, and Michiel H. M. Smid. Constructing plane spanners of bounded degree and low weight. Algorithmica, 42(3-4):249-264, 2005. URL: https://doi.org/10.1007/s00453-005-1168-8.
8. Prosenjit Bose and Michiel H. M. Smid. On plane geometric spanners: A survey and open problems. Comput. Geom., 46(7):818-830, 2013. URL: https://doi.org/10.1016/j.comgeo.2013.04.002.
9. Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is NP-hard. Comput. Geom., 9(1-2):3-24, 1998. URL: https://doi.org/10.1016/S0925-7721(97)00014-X.
10. Gruia Călinescu, Sanjiv Kapoor, and Mohammad Sarwat. Bounded-hops power assignment in ad hoc wireless networks. Discret. Appl. Math., 154(9):1358-1371, 2006. URL: https://doi.org/10.1016/j.dam.2005.05.034.
11. Nicolas Catusse, Victor Chepoi, and Yann Vaxès. Planar hop spanners for unit disk graphs. In Proc. 6th Workshop on Algorithms for Sensor Systems, Wireless Ad Hoc Networks, and Autonomous Mobile Entities (ALGOSENSORS), volume 6451 of LNCS, pages 16-30. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-16988-5_2.
12. Gautam Das and Deborah Joseph. Which triangulations approximate the complete graph? In Proc. International Symposium on Optimal Algorithms, volume 401 of LNCS, pages 168-192. Springer, 1989. URL: https://doi.org/10.1007/3-540-51859-2_15.
13. David P. Dobkin, Steven J. Friedman, and Kenneth J. Supowit. Delaunay graphs are almost as good as complete graphs. Discret. Comput. Geom., 5:399-407, 1990. URL: https://doi.org/10.1007/BF02187801.
14. Ding-Zhu Du, Frank K. Hwang, and S. C. Chao. Steiner minimal tree for points on a circle. Proceedings of the American Mathematical Society, 95(4):613-618, 1985. URL: https://doi.org/10.1090/S0002-9939-1985-0810173-6.
15. Ding-Zhu Du, Frank K. Hwang, and J. F. Weng. Steiner minimal trees for regular polygons. Discret. Comput. Geom., 2:65-84, 1987. URL: https://doi.org/10.1007/BF02187871.
16. Adrian Dumitrescu and Anirban Ghosh. Lattice spanners of low degree. Discret. Math. Algorithms Appl., 8(3):1650051:1-1650051:19, 2016. URL: https://doi.org/10.1142/S1793830916500518.
17. Adrian Dumitrescu and Anirban Ghosh. Lower bounds on the dilation of plane spanners. Int. J. Comput. Geom. Appl., 26(2):89-110, 2016. URL: https://doi.org/10.1142/S0218195916500059.
18. Ayan Dutta, Anirban Ghosh, and O. Patrick Kreidl. Multi-robot informative path planning with continuous connectivity constraints. In Proc. IEEE International Conference on Robotics and Automation (ICRA), pages 3245-3251, 2019. URL: https://doi.org/10.1109/ICRA.2019.8794090.
19. Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the shape of a set of points in the plane. IEEE Trans. Inf. Theory, 29(4):551-558, 1983. URL: https://doi.org/10.1109/TIT.1983.1056714.
20. David Eppstein. Spanning trees and spanners. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry, pages 425-461. North Holland, 2000. URL: https://doi.org/10.1016/b978-044482537-7/50010-3.
21. Paul Erdős. Extremal problems in graph theory. In Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963), pages 29-36, Prague, 1964. Publishing House of the Czechoslovak Academy of Sciences.
22. Jie Gao, Leonidas J. Guibas, John Hershberger, Li Zhang, and An Zhu. Geometric spanners for routing in mobile networks. IEEE J. Sel. Areas Commun., 23(1):174-185, 2005. URL: https://doi.org/10.1109/JSAC.2004.837364.
23. Iyad A. Kanj and Ljubomir Perkovic. On geometric spanners of euclidean and unit disk graphs. In Proc. 25th Symposium on Theoretical Aspects of Computer Science (STACS), volume 1 of LIPIcs, pages 409-420. Schloss Dagstuhl, 2008. URL: https://doi.org/10.4230/LIPIcs.STACS.2008.1320.
24. Guy Kortsarz and David Peleg. Generating sparse 2-spanners. J. Algorithms, 17(2):222-236, 1994. URL: https://doi.org/10.1006/jagm.1994.1032.
25. Guy Kortsarz and David Peleg. Generating low-degree 2-spanners. SIAM J. Comput., 27(5):1438-1456, 1998. URL: https://doi.org/10.1137/S0097539794268753.
26. Christos Levcopoulos and Andrzej Lingas. There are planar graphs almost as good as the complete graphs and almost as cheap as minimum spanning trees. Algorithmica, 8(3):251-256, 1992. URL: https://doi.org/10.1007/BF01758846.
27. Xiang-Yang Li. Algorithmic, geometric and graphs issues in wireless networks. Wirel. Commun. Mob. Comput., 3(2):119-140, 2003. URL: https://doi.org/10.1002/wcm.107.
28. Xiang-Yang Li and Yu Wang. Efficient construction of low weighted bounded degree planar spanner. Int. J. Comput. Geom. Appl., 14(1-2):69-84, 2004. URL: https://doi.org/10.1142/S0218195904001366.
29. Colin McDiarmid and Tobias Müller. The number of disk graphs. Eur. J. Comb., 35:413-431, 2014. URL: https://doi.org/10.1016/j.ejc.2013.06.037.
30. Joseph S. B. Mitchell. Geometric shortest paths and network optimization. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry, pages 633-701. North Holland, 2000. URL: https://doi.org/10.1016/b978-044482537-7/50016-4.
31. Wolfgang Mulzer. Minimum dilation triangulations for the regular n-gon. Master’s thesis, Freie Universität Berlin, 2004.
32. Nabil H. Mustafa and Kasturi R. Varadarajan. Epsilon-approximations and epsilon-nets. In Jacob E. Goodman, Joseph O'Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational Geometry, chapter 47. CRC Press, Boca Raton, FL, 3 edition, 2017.
33. Giri Narasimhan and Michiel H. M. Smid. Geometric Spanner Ntworks. Cambridge University Press, 2007. URL: https://doi.org/10.1201/9781315119601.
34. Tim Nieberg, Johann L. Hurink, and Walter Kern. Approximation schemes for wireless networks. ACM Trans. Algorithms, 4(4):49:1-49:17, 2008. URL: https://doi.org/10.1145/1383369.1383380.
35. János Pach and Dömötör Pálvölgyi. Unsplittable coverings in the plane. Adv. Math., 302:433-457, 2016. URL: https://doi.org/10.1016/j.aim.2016.07.011.
36. János Pach and Gábor Tardos. Tight lower bounds for the size of epsilon-nets. J. Amer. Math. Soc., 26(3):645-658, 2013. URL: https://doi.org/10.1090/S0894-0347-2012-00759-0.
37. János Pach and Gerhard J. Woeginger. Some new bounds for epsilon-nets. In Proc. 6th ACM Symposium on Computational Geometry (SoCG), pages 10-15, 1990. URL: https://doi.org/10.1145/98524.98529.
38. David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99-116, 1989. URL: https://doi.org/10.1002/jgt.3190130114.
39. Rajmohan Rajaraman. Topology control and routing in ad hoc networks: a survey. SIGACT News, 33(2):60-73, 2002. URL: https://doi.org/10.1145/564585.564602.
40. Sattar Sattari and Mohammad Izadi. An improved upper bound on dilation of regular polygons. Comput. Geom., 80:53-68, 2019. URL: https://doi.org/10.1016/j.comgeo.2019.01.009.