Document

# Towards Constant-Factor Approximation for Chordal / Distance-Hereditary Vertex Deletion

## File

LIPIcs.ISAAC.2020.62.pdf
• Filesize: 0.6 MB
• 16 pages

## Acknowledgements

A part of this research was done during the "2019 IBS Summer Research Program on Algorithms and Complexity in Discrete Structures", hosted by the IBS Discrete Mathematics Group.

## Cite As

Jungho Ahn, Eun Jung Kim, and Euiwoong Lee. Towards Constant-Factor Approximation for Chordal / Distance-Hereditary Vertex Deletion. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 62:1-62:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.ISAAC.2020.62

## Abstract

For a family of graphs ℱ, Weighted ℱ-Deletion is the problem for which the input is a vertex weighted graph G = (V, E) and the goal is to delete S ⊆ V with minimum weight such that G⧵S ∈ ℱ. Designing a constant-factor approximation algorithm for large subclasses of perfect graphs has been an interesting research direction. Block graphs, 3-leaf power graphs, and interval graphs are known to admit constant-factor approximation algorithms, but the question is open for chordal graphs and distance-hereditary graphs. In this paper, we add one more class to this list by presenting a constant-factor approximation algorithm when ℱ is the intersection of chordal graphs and distance-hereditary graphs. They are known as ptolemaic graphs and form a superset of both block graphs and 3-leaf power graphs above. Our proof presents new properties and algorithmic results on inter-clique digraphs as well as an approximation algorithm for a variant of Feedback Vertex Set that exploits this relationship (named Feedback Vertex Set with Precedence Constraints), each of which may be of independent interest.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Design and analysis of algorithms
• Theory of computation → Graph algorithms analysis
##### Keywords
• ptolemaic
• approximation algorithm
• linear programming
• feedback vertex set

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Akanksha Agrawal, Sudeshna Kolay, Daniel Lokshtanov, and Saket Saurabh. A faster FPT algorithm and a smaller kernel for block graph vertex deletion. In LATIN 2016: theoretical informatics, volume 9644 of Lecture Notes in Comput. Sci., pages 1-13. Springer, Berlin, 2016. URL: https://doi.org/10.1007/978-3-662-49529-2_1.
2. Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Polylogarithmic approximation algorithms for weighted-ℱ-deletion problems. In Approximation, randomization, and combinatorial optimization. Algorithms and techniques, volume 116 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 1, 15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018.
3. Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Feedback vertex set inspired kernel for chordal vertex deletion. ACM Trans. Algorithms, 15(1):Art. 11, 28, 2019. URL: https://doi.org/10.1145/3284356.
4. Akanksha Agrawal, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Interval vertex deletion admits a polynomial kernel. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1711-1730. SIAM, Philadelphia, PA, 2019. URL: https://doi.org/10.1137/1.9781611975482.103.
5. Jungho Ahn, Eduard Eiben, O-joung Kwon, and Sang-il Oum. A polynomial kernel for 3-leaf power deletion. In 45th International Symposium on Mathematical Foundations of Computer Science, volume 170 of LIPIcs. Leibniz Int. Proc. Inform., pages 5:1-5:14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2020.
6. Andreas Brandstädt and Van Bang Le. Structure and linear time recognition of 3-leaf powers. Inform. Process. Lett., 98(4):133-138, 2006. URL: https://doi.org/10.1016/j.ipl.2006.01.004.
7. Yixin Cao. Linear recognition of almost interval graphs. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1096-1115. ACM, New York, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch77.
8. Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM Trans. Algorithms, 11(3):Art. 21, 35, 2015. URL: https://doi.org/10.1145/2629595.
9. Yixin Cao and Dániel Marx. Chordal editing is fixed-parameter tractable. Algorithmica, 75(1):118-137, 2016. URL: https://doi.org/10.1007/s00453-015-0014-x.
10. Chandra Chekuri and Vivek Madan. Constant factor approximation for subset feedback set problems via a new LP relaxation. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 808-820. ACM, New York, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch58.
11. Eduard Eiben, Robert Ganian, and O-joung Kwon. A single-exponential fixed-parameter algorithm for distance-hereditary vertex deletion. J. Comput. System Sci., 97:121-146, 2018. URL: https://doi.org/10.1016/j.jcss.2018.05.005.
12. Martin Farber. On diameters and radii of bridged graphs. Discrete Math., 73(3):249-260, 1989. URL: https://doi.org/10.1016/0012-365X(89)90268-9.
13. Samuel Fiorini, Gwenaël Joret, and Ugo Pietropaoli. Hitting diamonds and growing cacti. In Integer programming and combinatorial optimization, volume 6080 of Lecture Notes in Comput. Sci., pages 191-204. Springer, Berlin, 2010. URL: https://doi.org/10.1007/978-3-642-13036-6_15.
14. Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-Deletion: approximation, kernelization and optimal FPT algorithms. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science - FOCS 2012, pages 470-479. IEEE Computer Soc., Los Alamitos, CA, 2012.
15. Anupam Gupta, Euiwoong Lee, Jason Li, Pasin Manurangsi, and Michał Włodarczyk. Losing treewidth by separating subsets. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1731-1749. SIAM, Philadelphia, PA, 2019. URL: https://doi.org/10.1137/1.9781611975482.104.
16. Pinar Heggernes, Pim van 't Hof, Bart M. P. Jansen, Stefan Kratsch, and Yngve Villanger. Parameterized complexity of vertex deletion into perfect graph classes. Theoret. Comput. Sci., 511:172-180, 2013. URL: https://doi.org/10.1016/j.tcs.2012.03.013.
17. Bart M. P. Jansen and Marcin Pilipczuk. Approximation and kernelization for chordal vertex deletion. SIAM J. Discrete Math., 32(3):2258-2301, 2018. URL: https://doi.org/10.1137/17M112035X.
18. Haim Kaplan, Ron Shamir, and Robert E. Tarjan. Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput., 28(5):1906-1922, 1999. URL: https://doi.org/10.1137/S0097539796303044.
19. Eun Jung Kim and O-joung Kwon. A polynomial kernel for distance-hereditary vertex deletion. In Algorithms and data structures, volume 10389 of Lecture Notes in Comput. Sci., pages 509-520. Springer, Cham, 2017.
20. Eun Jung Kim and O-joung Kwon. Erdős-Pósa property of chordless cycles and its applications. J. Combin. Theory Ser. B, 145:65-112, 2020. URL: https://doi.org/10.1016/j.jctb.2020.05.002.
21. Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion decompositions. ACM Trans. Algorithms, 12(2):Art. 21, 41, 2016. URL: https://doi.org/10.1145/2797140.
22. Stefan Kratsch and Magnus Wahlström. Compression via matroids: a randomized polynomial kernel for odd cycle transversal. ACM Trans. Algorithms, 10(4):Art. 20, 15, 2014. URL: https://doi.org/10.1145/2635810.
23. Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, Geevarghese Philip, and Saket Saurabh. A (2 + ε)-factor approximation algorithm for split vertex deletion. In 47th International Colloquium on Automata, Languages, and Programming, volume 168 of LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2020.
24. Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747-768, 2010. URL: https://doi.org/10.1007/s00453-008-9233-8.
25. Sang-il Oum. Rank-width and vertex-minors. J. Combin. Theory Ser. B, 95(1):79-100, 2005. URL: https://doi.org/10.1016/j.jctb.2005.03.003.
26. Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res. Lett., 32(4):299-301, 2004. URL: https://doi.org/10.1016/j.orl.2003.10.009.
27. Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A new algorithm for generating all the maximal independent sets. SIAM J. Comput., 6(3):505-517, 1977. URL: https://doi.org/10.1137/0206036.
28. Ryuhei Uehara and Yushi Uno. Laminar structure of Ptolemaic graphs with applications. Discrete Appl. Math., 157(7):1533-1543, 2009. URL: https://doi.org/10.1016/j.dam.2008.09.006.
29. Mihalis Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Methods, 2(1):77-79, 1981. URL: https://doi.org/10.1137/0602010.
X

Feedback for Dagstuhl Publishing