An Improved Approximation Algorithm for the Matching Augmentation Problem

Authors Joseph Cheriyan, Robert Cummings, Jack Dippel, Jasper Zhu



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2021.38.pdf
  • Filesize: 0.72 MB
  • 17 pages

Document Identifiers

Author Details

Joseph Cheriyan
  • Comb. & Opt. Dept., University of Waterloo, Canada
Robert Cummings
  • Comb. & Opt. Dept., University of Waterloo, Canada
Jack Dippel
  • Mathematics & Statistics, McGill University, Montreal, Canada
Jasper Zhu
  • Comb. & Opt. Dept., University of Waterloo, Canada

Acknowledgements

We are grateful to several colleagues for their careful reading of preliminary drafts and for their comments.

Cite AsGet BibTex

Joseph Cheriyan, Robert Cummings, Jack Dippel, and Jasper Zhu. An Improved Approximation Algorithm for the Matching Augmentation Problem. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 38:1-38:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.ISAAC.2021.38

Abstract

We present a 5/3-approximation algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost. A 7/4-approximation algorithm for the same problem was presented recently, see Cheriyan, et al., "The matching augmentation problem: a 7/4-approximation algorithm," Math. Program., 182(1):315-354, 2020. Our improvement is based on new algorithmic techniques, and some of these may lead to advances on related problems.

Subject Classification

ACM Subject Classification
  • Theory of computation → Approximation algorithms analysis
Keywords
  • 2-Edge connected graph
  • 2-edge covers
  • approximation algorithms
  • connectivity augmentation
  • forest augmentation problem
  • matching augmentation problem
  • network design

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. David Adjiashvili. Beating approximation factor two for weighted tree augmentation with bounded costs. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2384-2399. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.157.
  2. Joe Cheriyan, Jack Dippel, Fabrizio Grandoni, Arindam Khan, and Vishnu V. Narayan. The matching augmentation problem: a 7/4-approximation algorithm. Math. Program., 182(1):315-354, 2020. URL: https://doi.org/10.1007/s10107-019-01394-z.
  3. Joseph Cheriyan, Robert Cummings, Jack Dippel, and Jasper Zhu. An improved approximation algorithm for the matching augmentation problem. CoRR, abs/2007.11559, 2020. URL: http://arxiv.org/abs/2007.11559.
  4. Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via lift-and-project, part II. Algorithmica, 80(2):608-651, 2018. URL: https://doi.org/10.1007/s00453-017-0275-7.
  5. Joseph Cheriyan, Howard J. Karloff, Rohit Khandekar, and Jochen Könemann. On the integrality ratio for tree augmentation. Oper. Res. Lett., 36(4):399-401, 2008. URL: https://doi.org/10.1016/j.orl.2008.01.009.
  6. Nachshon Cohen and Zeev Nutov. A (1 + ln 2)-approximation algorithm for minimum-cost 2-edge-connectivity augmentation of trees with constant radius. Theor. Comput. Sci., 489-490:67-74, 2013. URL: https://doi.org/10.1016/j.tcs.2013.04.004.
  7. R. Diestel. Graph Theory (4th ed.). Graduate Texts in Mathematics, Volume 173. Springer-Verlag, Heidelberg, 2010. URL: http://diestel-graph-theory.com/.
  8. Dippel, Jack. The Matching Augmentation Problem: A 7/4-Approximation Algorithm. M.Math. Thesis, C&O Department. UWSpace (University of Waterloo), 2019. URL: http://hdl.handle.net/10012/14700.
  9. Samuel Fiorini, Martin Groß, Jochen Könemann, and Laura Sanità. Approximating weighted tree augmentation via Chvátal-Gomory cuts. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 817-831. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975031.53.
  10. Harold N. Gabow, Michel X. Goemans, Éva Tardos, and David P. Williamson. Approximating the smallest k-edge connected spanning subgraph by LP-rounding. Networks, 53(4):345-357, 2009. URL: https://doi.org/10.1002/net.20289.
  11. G.Even, J.Feldman, G.Kortsarz, and Z.Nutov. A 1.8 approximation algorithm for augmenting edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms, 5(2):21:1-17, 2009. Google Scholar
  12. Michel X. Goemans and David P. Williamson. A general approximation technique for constrained forest problems. SIAM J. Comput., 24(2):296-317, 1995. URL: https://doi.org/10.1137/S0097539793242618.
  13. Fabrizio Grandoni, Christos Kalaitzis, and Rico Zenklusen. Improved approximation for tree augmentation: saving by rewiring. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 632-645. ACM, 2018. URL: https://doi.org/10.1145/3188745.3188898.
  14. H.Nagamochi. An approximation for finding a smallest 2-edge connected subgraph containing a specified spanning tree. Discrete Applied Mathematics, 126:83-113, 2003. Google Scholar
  15. Christoph Hunkenschröder, Santosh S. Vempala, and Adrian Vetta. A 4/3-approximation algorithm for the minimum 2-edge connected subgraph problem. ACM Trans. Algorithms, 15(4):55:1-55:28, 2019. URL: https://doi.org/10.1145/3341599.
  16. K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica, 21(1):39-60, 2001. Google Scholar
  17. Guy Kortsarz and Zeev Nutov. A simplified 1.5-approximation algorithm for augmenting edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms, 12(2):23:1-20, 2016. URL: https://doi.org/10.1145/2786981.
  18. Lap Chi Lau, R. Ravi, and Mohit Singh. Iterative Methods in Combinatorial Optimization. Cambridge Texts in Applied Mathematics (No. 46). Cambridge University Press, 2011. URL: http://www.cambridge.org/catalogue/catalogue.asp?ISBN=9780521189439.
  19. Zeev Nutov. On the tree augmentation problem. In Kirk Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 61:1-61:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ESA.2017.61.
  20. A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics, Volume 24. Springer-Verlag, Berlin Heidelberg, 2003. URL: http://www.springer.com/gp/book/9783540443896.
  21. András Sebö and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica, 34(5):597-629, 2014. URL: https://doi.org/10.1007/s00493-014-2960-3.
  22. S.Khuller and U.Vishkin. Biconnectivity approximations and graph carvings. Journal of the ACM, 41(2):214-235, 1994. Google Scholar
  23. Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree augmentation. CoRR, abs/2104.07114, 2021. URL: http://arxiv.org/abs/2104.07114.
  24. Santosh Vempala and Adrian Vetta. Factor 4/3 approximations for minimum 2-connected subgraphs. In Klaus Jansen and Samir Khuller, editors, Approximation Algorithms for Combinatorial Optimization, Third International Workshop, APPROX 2000, Saarbrücken, Germany, September 5-8, 2000, Proceedings, volume 1913 of Lecture Notes in Computer Science, pages 262-273. Springer, 2000. URL: https://doi.org/10.1007/3-540-44436-X_26.
  25. David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cambridge University Press, 2011. URL: http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE.
  26. Alexander Zelikovsky. Better approximation bounds for the network and Euclidean Steiner tree problems. Technical report, CS-96-06, Department of Computer Science, University of Virginia, USA, 1996. Google Scholar