The celebrated notion of important separators bounds the number of small (S,T)-separators in a graph which are "farthest from S" in a technical sense. In this paper, we introduce a generalization of this powerful algorithmic primitive, tailored to undirected graphs, that is phrased in terms of k-secluded vertex sets: sets with an open neighborhood of size at most k. In this terminology, the bound on important separators says that there are at most 4^k maximal k-secluded connected vertex sets C containing S but disjoint from T. We generalize this statement significantly: even when we demand that G[C] avoids a finite set ℱ of forbidden induced subgraphs, the number of such maximal subgraphs is 2^𝒪(k) and they can be enumerated efficiently. This enumeration algorithm allows us to make significant improvements for two problems from the literature. Our first application concerns the Connected k-Secluded ℱ-free subgraph problem, where ℱ is a finite set of forbidden induced subgraphs. Given a graph in which each vertex has a positive integer weight, the problem asks to find a maximum-weight connected k-secluded vertex set C ⊆ V(G) such that G[C] does not contain an induced subgraph isomorphic to any F ∈ ℱ. The parameterization by k is known to be solvable in triple-exponential time via the technique of recursive understanding, which we improve to single-exponential. Our second application concerns the deletion problem to scattered graph classes. A scattered graph class is defined by demanding that every connected component is contained in at least one of the prescribed graph classes Π_1, …, Π_d. The deletion problem to a scattered graph class is to find a vertex set of size at most k whose removal yields a graph from the class. We obtain a single-exponential algorithm whenever each class Π_i is characterized by a finite number of forbidden induced subgraphs. This generalizes and improves upon earlier results in the literature.
@InProceedings{jansen_et_al:LIPIcs.ISAAC.2023.42, author = {Jansen, Bart M. P. and de Kroon, Jari J. H. and W{\l}odarczyk, Micha{\l}}, title = {{Single-Exponential FPT Algorithms for Enumerating Secluded ℱ-Free Subgraphs and Deleting to Scattered Graph Classes}}, booktitle = {34th International Symposium on Algorithms and Computation (ISAAC 2023)}, pages = {42:1--42:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-289-1}, ISSN = {1868-8969}, year = {2023}, volume = {283}, editor = {Iwata, Satoru and Kakimura, Naonori}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.42}, URN = {urn:nbn:de:0030-drops-193440}, doi = {10.4230/LIPIcs.ISAAC.2023.42}, annote = {Keywords: fixed-parameter tractability, important separators, secluded subgraphs} }
Feedback for Dagstuhl Publishing