Zero-Knowledge PCPs (ZK-PCPs; Kilian, Petrank, and Tardos, STOC `97) are PCPs with the additional zero-knowledge guarantee that the view of any (possibly malicious) verifier making a bounded number of queries to the proof can be efficiently simulated up to a small statistical distance. Similarly, ZK-PCPs of Proximity (ZK-PCPPs; Ishai and Weiss, TCC `14) are PCPPs in which the view of an adversarial verifier can be efficiently simulated with few queries to the input. Previous ZK-PCP constructions obtained an exponential gap between the query complexity q of the honest verifier, and the bound q^* on the queries of a malicious verifier (i.e., q = poly log (q^*)), but required either exponential-time simulation, or adaptive honest verification. This should be contrasted with standard PCPs, that can be verified non-adaptively (i.e., with a single round of queries to the proof). The problem of constructing such ZK-PCPs, even when q^* = q, has remained open since they were first introduced more than 2 decades ago. This question is also open for ZK-PCPPs, for which no construction with non-adaptive honest verification is known (not even with exponential-time simulation). We resolve this question by constructing the first ZK-PCPs and ZK-PCPPs which simultaneously achieve efficient zero-knowledge simulation and non-adaptive honest verification. Our schemes have a square-root query gap, namely q^*/q = O(√n) where n is the input length. Our constructions combine the "MPC-in-the-head" technique (Ishai et al., STOC `07) with leakage-resilient secret sharing. Specifically, we use the MPC-in-the-head technique to construct a ZK-PCP variant over a large alphabet, then employ leakage-resilient secret sharing to design a new alphabet reduction for ZK-PCPs which preserves zero-knowledge.
@InProceedings{hazay_et_al:LIPIcs.ITC.2021.6, author = {Hazay, Carmit and Venkitasubramaniam, Muthuramakrishnan and Weiss, Mor}, title = {{ZK-PCPs from Leakage-Resilient Secret Sharing}}, booktitle = {2nd Conference on Information-Theoretic Cryptography (ITC 2021)}, pages = {6:1--6:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-197-9}, ISSN = {1868-8969}, year = {2021}, volume = {199}, editor = {Tessaro, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.6}, URN = {urn:nbn:de:0030-drops-143250}, doi = {10.4230/LIPIcs.ITC.2021.6}, annote = {Keywords: Zero Knowledge, Probabilisitically Checkable Proofs, PCPs of Proximity, Leakage Resilience, Secret Sharing} }
Feedback for Dagstuhl Publishing