Quantum Codes from High-Dimensional Manifolds

Author Matthew B. Hastings

Thumbnail PDF


  • Filesize: 0.51 MB
  • 26 pages

Document Identifiers

Author Details

Matthew B. Hastings

Cite AsGet BibTex

Matthew B. Hastings. Quantum Codes from High-Dimensional Manifolds. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 67, pp. 25:1-25:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


We construct toric codes on various high-dimensional manifolds. Assuming a conjecture in geometry we find families of quantum CSS stabilizer codes on N qubits with logarithmic weight stabilizers and distance N^{1-\epsilon} for any \epsilon>0. The conjecture is that there is a constant C>0 such that for any n-dimensional torus {\mathbb T}^n={\mathbb R}^n/\Lambda, where \Lambda is a lattice, the least volume unoriented n/2-dimensional cycle (using the Euclidean metric) representing nontrivial homology has volume at least C^n times the volume of the least volume n/2-dimensional hyperplane representing nontrivial homology; in fact, it would suffice to have this result for \Lambda an integral lattice with the cycle restricted to faces of a cubulation by unit hypercubes. The main technical result is an estimate of Rankin invariants for certain random lattices, showing that in a certain sense they are optimal. Additionally, we construct codes with square-root distance, logarithmic weight stabilizers, and inverse polylogarithmic soundness factor (considered as quantum locally testable codes. We also provide an short, alternative proof that the shortest vector in the exterior power of a lattice may be non-split.
  • quantum codes
  • random lattices
  • Rankin invariants


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Dorit Aharonov and Lior Eldar. Quantum locally testable codes. SIAM Journal on Computing, 44(5):1230-1262, 2015. Google Scholar
  2. Ivan Babenko and Mikhail Katz. Systolic freedom of orientable manifolds. Annales scientifiques de l'Ecole normale supérieure, 31(6):787-809, 1998. URL: http://dx.doi.org/10.1016/S0012-9593(99)80003-2.
  3. Dave Bacon, Steven T Flammia, Aram W Harrow, and Jonathan Shi. Sparse quantum codes from quantum circuits. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages 327-334. ACM, 2015. Google Scholar
  4. H. Bombin and M. A. Martin-Delgado. Homological error correction: Classical and quantum codes. Journal of Mathematical Physics, 48(5):052105, may 2007. URL: http://dx.doi.org/10.1063/1.2731356.
  5. Sergey Bravyi and Matthew B Hastings. Homological product codes. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 273-282. ACM, 2014. Google Scholar
  6. A. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes exist. Physical Review A, 54(2):1098-1105, aug 1996. URL: http://dx.doi.org/10.1103/physreva.54.1098.
  7. John Horton Conway and Neil James Alexander Sloane. Sphere packings, lattices and groups, volume 290. Springer Science &Business Media, 2013. Google Scholar
  8. Renaud Coulangeon. Minimal vectors in the second exterior power of a lattice. Journal of algebra, 194(2):467-476, 1997. Google Scholar
  9. Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological quantum memory. Journal of Mathematical Physics, 43(9):4452-4505, 2002. Google Scholar
  10. Uri Erez, Simon Litsyn, and Ram Zamir. Lattices which are good for (almost) everything. IEEE Transactions on Information Theory, 51(10):3401-3416, 2005. Google Scholar
  11. Herbert Federer and Wendell H Fleming. Normal and integral currents. Annals of Mathematics, 72:458-520, 1960. Google Scholar
  12. Federer-Fleming deformation theorem. Encyclopedia of Mathematics. URL: http://www.encyclopediaofmath.org/index.php?title=Federer-Fleming_deformation_theorem&oldid=28190.
  13. Michael H. Freedman and David A. Meyer. Projective plane and planar quantum codes. Foundations of Computational Mathematics, 1(3):325-332, jul 2001. URL: http://dx.doi.org/10.1007/s102080010013.
  14. Michael H Freedman, David A Meyer, and Feng Luo. Z2-systolic freedom and quantum codes. Mathematics of quantum computation, Chapman &Hall/CRC, pages 287-320, 2002. Google Scholar
  15. Robert Gallager. Low-density parity-check codes. IRE Transactions on information theory, 8(1):21-28, 1962. Google Scholar
  16. Nicolas Gama, Nick Howgrave-Graham, Henrik Koy, and Phong Q Nguyen. Rankin?s constant and blockwise lattice reduction. In Annual International Cryptology Conference, pages 112-130. Springer, 2006. Google Scholar
  17. Reese Harvey and H Blaine Lawson. Calibrated geometries. Acta Mathematica, 148(1):47-157, 1982. Google Scholar
  18. A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2-30, jan 2003. URL: http://dx.doi.org/10.1016/s0003-4916(02)00018-0.
  19. Anthony Leverrier, Jean-Pierre Tillich, and Gilles Zémor. Quantum expander codes. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 810-824. IEEE, 2015. Google Scholar
  20. David JC MacKay. Good error-correcting codes based on very sparse matrices. IEEE transactions on Information Theory, 45(2):399-431, 1999. Google Scholar
  21. Jacques Martinet. Perfect lattices in Euclidean spaces, volume 327. Springer Science &Business Media, 2013. Google Scholar
  22. John Willard Milnor and Dale Husemoller. Symmetric bilinear forms, volume 60. Springer, 1973. Google Scholar
  23. David Poulin. Stabilizer formalism for operator quantum error correction. Physical review letters, 95(23):230504, 2005. Google Scholar
  24. Robert Alexander Rankin. On positive definite quadratic forms. Journal of the London Mathematical Society, 1(3):309-314, 1953. Google Scholar
  25. Wolfgang M Schmidt et al. Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height. Duke Mathematical Journal, 35(2):327-339, 1968. Google Scholar
  26. Jean-Pierre Tillich and Gilles Zémor. Quantum ldpc codes with positive rate and minimum distance proportional to n^1/2. arXiv preprint arXiv:0903.0566, 2009. Google Scholar