Given a set of n points in R^d, the (monochromatic) Closest Pair problem asks to find a pair of distinct points in the set that are closest in the l_p-metric. Closest Pair is a fundamental problem in Computational Geometry and understanding its fine-grained complexity in the Euclidean metric when d=omega(log n) was raised as an open question in recent works (Abboud-Rubinstein-Williams [FOCS'17], Williams [SODA'18], David-Karthik-Laekhanukit [SoCG'18]). In this paper, we show that for every p in R_{>= 1} cup {0}, under the Strong Exponential Time Hypothesis (SETH), for every epsilon>0, the following holds: - No algorithm running in time O(n^{2-epsilon}) can solve the Closest Pair problem in d=(log n)^{Omega_{epsilon}(1)} dimensions in the l_p-metric. - There exists delta = delta(epsilon)>0 and c = c(epsilon)>= 1 such that no algorithm running in time O(n^{1.5-epsilon}) can approximate Closest Pair problem to a factor of (1+delta) in d >= c log n dimensions in the l_p-metric. In particular, our first result is shown by establishing the computational equivalence of the bichromatic Closest Pair problem and the (monochromatic) Closest Pair problem (up to n^{epsilon} factor in the running time) for d=(log n)^{Omega_epsilon(1)} dimensions. Additionally, under SETH, we rule out nearly-polynomial factor approximation algorithms running in subquadratic time for the (monochromatic) Maximum Inner Product problem where we are given a set of n points in n^{o(1)}-dimensional Euclidean space and are required to find a pair of distinct points in the set that maximize the inner product. At the heart of all our proofs is the construction of a dense bipartite graph with low contact dimension, i.e., we construct a balanced bipartite graph on n vertices with n^{2-epsilon} edges whose vertices can be realized as points in a (log n)^{Omega_epsilon(1)}-dimensional Euclidean space such that every pair of vertices which have an edge in the graph are at distance exactly 1 and every other pair of vertices are at distance greater than 1. This graph construction is inspired by the construction of locally dense codes introduced by Dumer-Miccancio-Sudan [IEEE Trans. Inf. Theory'03].
@InProceedings{c.s._et_al:LIPIcs.ITCS.2019.17, author = {C. S., Karthik and Manurangsi, Pasin}, title = {{On Closest Pair in Euclidean Metric: Monochromatic is as Hard as Bichromatic}}, booktitle = {10th Innovations in Theoretical Computer Science Conference (ITCS 2019)}, pages = {17:1--17:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-095-8}, ISSN = {1868-8969}, year = {2019}, volume = {124}, editor = {Blum, Avrim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.17}, URN = {urn:nbn:de:0030-drops-101100}, doi = {10.4230/LIPIcs.ITCS.2019.17}, annote = {Keywords: Closest Pair, Bichromatic Closest Pair, Contact Dimension, Fine-Grained Complexity} }
Feedback for Dagstuhl Publishing