On the Complexity of Symmetric Polynomials

Authors Markus Bläser, Gorav Jindal



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2019.47.pdf
  • Filesize: 481 kB
  • 14 pages

Document Identifiers

Author Details

Markus Bläser
  • Department of Computer Science, Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
Gorav Jindal
  • Department of Computer Science, Aalto University, Espoo, Finland

Cite AsGet BibTex

Markus Bläser and Gorav Jindal. On the Complexity of Symmetric Polynomials. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 47:1-47:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.ITCS.2019.47

Abstract

The fundamental theorem of symmetric polynomials states that for a symmetric polynomial f_{Sym} in C[x_1,x_2,...,x_n], there exists a unique "witness" f in C[y_1,y_2,...,y_n] such that f_{Sym}=f(e_1,e_2,...,e_n), where the e_i's are the elementary symmetric polynomials. In this paper, we study the arithmetic complexity L(f) of the witness f as a function of the arithmetic complexity L(f_{Sym}) of f_{Sym}. We show that the arithmetic complexity L(f) of f is bounded by poly(L(f_{Sym}),deg(f),n). To the best of our knowledge, prior to this work only exponential upper bounds were known for L(f). The main ingredient in our result is an algebraic analogue of Newton's iteration on power series. As a corollary of this result, we show that if VP != VNP then there exist symmetric polynomial families which have super-polynomial arithmetic complexity. Furthermore, we study the complexity of testing whether a function is symmetric. For polynomials, this question is equivalent to arithmetic circuit identity testing. In contrast to this, we show that it is hard for Boolean functions.

Subject Classification

ACM Subject Classification
  • Theory of computation → Algebraic complexity theory
Keywords
  • Symmetric Polynomials
  • Arithmetic Circuits
  • Arithmetic Complexity
  • Power Series
  • Elementary Symmetric Polynomials
  • Newton's Iteration

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. Miltersen. On the Complexity of Numerical Analysis. SIAM Journal on Computing, 38(5):1987-2006, 2009. URL: http://dx.doi.org/10.1137/070697926.
  2. Garrett Birkhoff and Saunders Mac Lane. A survey of modern algebra. New York : Macmillan, 4th ed edition, 1977. URL: http://www.gbv.de/dms/hbz/toc/ht000038471.pdf.
  3. Ben Blum-Smith and Samuel Coskey. The Fundamental Theorem on Symmetric Polynomials: History’s First Whiff of Galois Theory. The College Mathematics Journal, 48(1):18-29, 2017. URL: http://www.jstor.org/stable/10.4169/college.math.j.48.1.18.
  4. J. N. Bray, M. D. E. Conder, C. R. Leedham-Green, and E. A. O'Brien. Short presentations for alternating and symmetric groups. Trans. Amer. Math. Soc., 363(6):3277-3285, 2011. URL: http://dx.doi.org/10.1090/S0002-9947-2011-05231-1.
  5. Peter Bürgisser. Completeness and reduction in algebraic complexity theory, volume 7. Springer Science &Business Media, 2013. Google Scholar
  6. Xavier Dahan, Éric Schost, and Jie Wu. Evaluation properties of invariant polynomials. Journal of Symbolic Computation, 44(11):1592-1604, 2009. In Memoriam Karin Gatermann. URL: http://dx.doi.org/10.1016/j.jsc.2008.12.002.
  7. Pierrick Gaudry, Eric Schost, and Nicolas M. Thiéry. Evaluation properties of symmetric polynomials. International Journal of Algebra and Computation, 16(3):505-523, 2006. URL: http://dx.doi.org/10.1142/S0218196706003128.
  8. Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge University Press, 2008. Google Scholar
  9. H. T. Kung and J. F. Traub. All Algebraic Functions Can Be Computed Fast. J. ACM, 25(2):245-260, April 1978. URL: http://dx.doi.org/10.1145/322063.322068.
  10. Dick Lipton and Ken Regan. Arithmetic Complexity and Symmetry, July 2009. URL: https://rjlipton.wordpress.com/2009/07/10/arithmetic-complexity-and-symmetry/.
  11. Meena Mahajan. Algebraic Complexity Classes. In Manindra Agrawal and Vikraman Arvind, editors, Perspectives in Computational Complexity: The Somenath Biswas Anniversary Volume, pages 51-75. Springer International Publishing, Cham, 2014. URL: http://dx.doi.org/10.1007/978-3-319-05446-9_4.
  12. Tateaki Sasaki and Fujio Kako. Solving multivariate algebraic equation by Hensel construction. Japan Journal of Industrial and Applied Mathematics, 16(2):257-285, June 1999. URL: http://dx.doi.org/10.1007/BF03167329.
  13. Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A Survey of Recent Results and Open Questions. Foundations and Trends® in Theoretical Computer Science, 5(3–4):207-388, 2010. URL: http://dx.doi.org/10.1561/0400000039.
  14. Volker Strassen. Vermeidung von Divisionen. Journal für die reine und angewandte Mathematik, 264:184-202, 1973. Google Scholar
  15. L. G. Valiant. Completeness Classes in Algebra. In Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, STOC '79, pages 249-261, New York, NY, USA, 1979. ACM. URL: http://dx.doi.org/10.1145/800135.804419.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail