LIPIcs.ITCS.2023.18.pdf
- Filesize: 0.9 MB
- 22 pages
In the certification problem, the algorithm is given a function f with certificate complexity k and an input x^⋆, and the goal is to find a certificate of size ≤ poly(k) for f’s value at x^⋆. This problem is in NP^NP, and assuming 𝖯 ≠ NP, is not in 𝖯. Prior works, dating back to Valiant in 1984, have therefore sought to design efficient algorithms by imposing assumptions on f such as monotonicity. Our first result is a BPP^NP algorithm for the general problem. The key ingredient is a new notion of the balanced influence of variables, a natural variant of influence that corrects for the bias of the function. Balanced influences can be accurately estimated via uniform generation, and classic BPP^NP algorithms are known for the latter task. We then consider certification with stricter instance-wise guarantees: for each x^⋆, find a certificate whose size scales with that of the smallest certificate for x^⋆. In sharp contrast with our first result, we show that this problem is NP^NP-hard even to approximate. We obtain an optimal inapproximability ratio, adding to a small handful of problems in the higher levels of the polynomial hierarchy for which optimal inapproximability is known. Our proof involves the novel use of bit-fixing dispersers for gap amplification.
Feedback for Dagstuhl Publishing